論文の概要: FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning
- arxiv url: http://arxiv.org/abs/2507.07258v1
- Date: Wed, 09 Jul 2025 20:07:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.195745
- Title: FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning
- Title(参考訳): FedP3E: クロスサイトフェデレーション学習における非IIDIoTマルウェア検出のためのプライバシ保護プロトタイプ交換
- Authors: Rami Darwish, Mahmoud Abdelsalam, Sajad Khorsandroo, Kaushik Roy,
- Abstract要約: データプライバシを維持しつつ、間接的なクライアント間表現共有をサポートする新しいFLフレームワークであるFedP3Eを提案する。
我々は,N-BaIoTデータセット上のFedP3Eを,データ不均衡の程度が異なる現実的なクロスサイロシナリオ下で評価した。
- 参考スコア(独自算出の注目度): 5.7494612007431805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As IoT ecosystems continue to expand across critical sectors, they have become prominent targets for increasingly sophisticated and large-scale malware attacks. The evolving threat landscape, combined with the sensitive nature of IoT-generated data, demands detection frameworks that are both privacy-preserving and resilient to data heterogeneity. Federated Learning (FL) offers a promising solution by enabling decentralized model training without exposing raw data. However, standard FL algorithms such as FedAvg and FedProx often fall short in real-world deployments characterized by class imbalance and non-IID data distributions -- particularly in the presence of rare or disjoint malware classes. To address these challenges, we propose FedP3E (Privacy-Preserving Prototype Exchange), a novel FL framework that supports indirect cross-client representation sharing while maintaining data privacy. Each client constructs class-wise prototypes using Gaussian Mixture Models (GMMs), perturbs them with Gaussian noise, and transmits only these compact summaries to the server. The aggregated prototypes are then distributed back to clients and integrated into local training, supported by SMOTE-based augmentation to enhance representation of minority malware classes. Rather than relying solely on parameter averaging, our prototype-driven mechanism enables clients to enrich their local models with complementary structural patterns observed across the federation -- without exchanging raw data or gradients. This targeted strategy reduces the adverse impact of statistical heterogeneity with minimal communication overhead. We evaluate FedP3E on the N-BaIoT dataset under realistic cross-silo scenarios with varying degrees of data imbalance.
- Abstract(参考訳): IoTエコシステムは重要な分野にわたって拡大し続けており、ますます高度で大規模なマルウェア攻撃の標的となっている。
進化する脅威の状況は、IoT生成データに敏感な性質と相まって、プライバシ保護とデータ不均一性に対する耐性の両方を備えた検出フレームワークを必要としている。
Federated Learning (FL)は、生データを公開せずに分散モデルトレーニングを可能にする、有望なソリューションを提供する。
しかしながら、FedAvgやFedProxのような標準的なFLアルゴリズムは、クラス不均衡と非IIDデータ分散を特徴とする実世界のデプロイでは不足することが多い。
これらの課題に対処するため、データプライバシを維持しながら間接的なクライアント間表現共有をサポートする新しいFLフレームワークであるFedP3E(Privacy-Preserving Prototype Exchange)を提案する。
各クライアントはガウス混合モデル(GMM)を用いてクラスワイドのプロトタイプを構築し、ガウスノイズでそれらを摂動させ、これらのコンパクトなサマリーのみをサーバに送信する。
集約されたプロトタイプはクライアントに配布され、SMOTEベースの拡張によってサポートされたローカルトレーニングに統合され、マイノリティなマルウェアクラスの表現が強化される。
パラメータ平均化のみに頼るのではなく、当社のプロトタイプ駆動のメカニズムにより、クライアントは生のデータや勾配を交換することなく、フェデレーション全体で観察される補完的な構造パターンでローカルモデルを拡張できます。
このターゲット戦略は、通信オーバーヘッドを最小限に抑えた統計的不均一性の悪影響を低減する。
我々は,N-BaIoTデータセット上のFedP3Eを,データ不均衡の程度が異なる現実的なクロスサイロシナリオ下で評価した。
関連論文リスト
- FedGraM: Defending Against Untargeted Attacks in Federated Learning via Embedding Gram Matrix [8.745475105649192]
Federated Learning (FL)は、地理的に分散したクライアントが、ローカルモデルのみを共有することで、機械学習モデルを協調的にトレーニングすることを可能にする。
FLは、基盤となるデータ分散上でのグローバルモデルのパフォーマンスを低下させることを目的とした、未ターゲットの攻撃に対して脆弱である。
FLにおける未標的攻撃に対する防御を目的とした,新たなロバストアグリゲーション手法であるFedGraMを提案する。
論文 参考訳(メタデータ) (2025-05-20T07:26:54Z) - Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning [7.808916974942399]
不均一エッジデバイスは、多種多様で非独立で、同一に分散された(非IID)データを生成する。
本稿では, 悪意のあるクライアントと良識を区別するための, FeRA という, 表現力に基づく防衛機構を提案する。
本評価では,エッジデバイスに典型的な非IIDデータ分散に挑戦するなど,さまざまなFLシナリオにおけるFeRAの堅牢性を示す。
論文 参考訳(メタデータ) (2025-05-15T13:44:32Z) - Asynchronous Personalized Federated Learning through Global Memorization [16.630360485032163]
Federated Learningは、機密データを集中化せずに、分散デバイス間で協調的なモデルトレーニングを可能にすることにより、プライバシ保護ソリューションを提供する。
サーバ側セマンティックジェネレータを用いて、クライアントがパーソナライズされたモデルを開発することを可能にする非同期パーソナライズドフェデレーション学習フレームワークを提案する。
このジェネレータは、グローバルモデル監視の下でデータ自由な知識伝達によって訓練され、見知らぬサンプルと見えないサンプルの両方を生成することにより、クライアントデータの多様性を高める。
総合データ障害訓練のリスクに対処するため, 頑健なパーソナライゼーションを確保するために, 疎結合モデルを導入する。
論文 参考訳(メタデータ) (2025-03-01T09:00:33Z) - Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation [1.519321208145928]
Federated Learning(FL)は、共有モデルの共同開発を目指す個人に対して、有望なフレームワークを提供する。
クライアント間のデータの分散の変化は、主に集約プロセスの不安定性によって、FL方法論に大きく影響します。
本稿では,個々のパラメータのプルーニングと正規化技術を組み合わせて,個々のクライアントモデルのロバスト性を向上する新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:22:37Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、プライバシの問題に対処するために設計された分散フレームワークである。
新たなアタックサーフェスを導入しており、データは独立に、そしてIdentically Distributedである場合、特に困難である。
我々は,モデル中毒に対する簡易かつ効果的な新しい防御アルゴリズムであるFedCCを提案する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
フェデレートラーニング(FL)は、エッジデバイスが各デバイス内でデータを直接共有することなく、モデルを集合的に学習することを可能にする。
現在の最先端アルゴリズムは、クライアント間のローカルデータの均一性が増大するにつれて性能劣化に悩まされる。
我々はFedMixという名の新しい拡張アルゴリズムを提案し、これは驚くべきが単純なデータ拡張手法であるMixupにインスパイアされている。
論文 参考訳(メタデータ) (2021-07-01T06:14:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。