論文の概要: When do neural ordinary differential equations generalize on complex networks?
- arxiv url: http://arxiv.org/abs/2602.08980v1
- Date: Mon, 09 Feb 2026 18:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.41763
- Title: When do neural ordinary differential equations generalize on complex networks?
- Title(参考訳): 神経常微分方程式はいつ複素ネットワーク上で一般化されるのか?
- Authors: Moritz Laber, Tina Eliassi-Rad, Brennan Klein,
- Abstract要約: 偏微分方程式(mathtnODE$s)をバラブシ・バルツェル形式に従うベクトル場を用いて研究する。
次数の不均一性と力学系のタイプが、グラフのサイズや性質をまたいで一般化する$mathtnODE$sの能力を決定する主要な要因であることがわかった。
- 参考スコア(独自算出の注目度): 0.1710303986316337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural ordinary differential equations (neural ODEs) can effectively learn dynamical systems from time series data, but their behavior on graph-structured data remains poorly understood, especially when applied to graphs with different size or structure than encountered during training. We study neural ODEs ($\mathtt{nODE}$s) with vector fields following the Barabási-Barzel form, trained on synthetic data from five common dynamical systems on graphs. Using the $\mathbb{S}^1$-model to generate graphs with realistic and tunable structure, we find that degree heterogeneity and the type of dynamical system are the primary factors in determining $\mathtt{nODE}$s' ability to generalize across graph sizes and properties. This extends to $\mathtt{nODE}$s' ability to capture fixed points and maintain performance amid missing data. Average clustering plays a secondary role in determining $\mathtt{nODE}$ performance. Our findings highlight $\mathtt{nODE}$s as a powerful approach to understanding complex systems but underscore challenges emerging from degree heterogeneity and clustering in realistic graphs.
- Abstract(参考訳): ニューラル常微分方程式(ニューラルODE)は時系列データから動的系を効果的に学習することができるが、グラフ構造データに対するそれらの挙動は、特に訓練中に遭遇したグラフのサイズや構造が異なる場合、よく理解されていない。
グラフ上の5つの一般的な力学系から合成されたデータに基づいて、バラバシ・バルツェル形式に従ってベクトル場を持つニューラルODE(\mathtt{nODE}$s)を研究する。
現実的かつチューニング可能な構造を持つグラフを生成するために$\mathbb{S}^1$-modelを使用すると、次数の不均一性と力学系のタイプが、グラフのサイズや性質をまたいで一般化する $\mathtt{nODE}$s の能力を決定する主要な要因であることが分かる。
これは$\mathtt{nODE}$sの固定ポイントをキャプチャし、欠落したデータの中でパフォーマンスを維持する機能にまで拡張される。
平均クラスタリングは$\mathtt{nODE}$パフォーマンスを決定する上で二次的な役割を果たす。
この結果から,複雑なシステムを理解するための強力なアプローチとして$\mathtt{nODE}$sが注目されている。
関連論文リスト
- Neural Graphical Models [2.6842860806280058]
本稿では,複雑な特徴依存を合理的な計算コストで表現するために,NGM(Neural Graphical Models)を導入する。
ニューラルネットワークをマルチタスク学習フレームワークとして使用することにより,機能間の依存関係構造と複雑な関数表現をキャプチャする。
NGMは、有向グラフ、無向グラフ、混合エッジグラフを含む一般的なグラフ構造に適合し、混合入力データ型をサポートする。
論文 参考訳(メタデータ) (2022-10-02T07:59:51Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Effects of Graph Convolutions in Deep Networks [8.937905773981702]
多層ネットワークにおけるグラフ畳み込みの効果に関する厳密な理論的理解を示す。
単一のグラフ畳み込みは、多層ネットワークがデータを分類できる手段間の距離のレギュレーションを拡大することを示す。
ネットワーク層間の異なる組み合わせに配置されたグラフ畳み込みの性能に関する理論的および実証的な知見を提供する。
論文 参考訳(メタデータ) (2022-04-20T08:24:43Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Graph-Time Convolutional Neural Networks [9.137554315375919]
第一原理グラフ時間畳み込みニューラルネットワーク(GTCNN)を用いた積グラフによる空間関係の表現
シフト・アンド・テンポラル演算子を追従してグラフタイム畳み込みフィルタを開発し、製品グラフ上の高レベルな特徴を学習する。
アクティブノードの数とパラメータを減らしながら、空間グラフを保存するゼロパッドプーリングを開発しています。
論文 参考訳(メタデータ) (2021-03-02T14:03:44Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Scalable Deep Generative Modeling for Sparse Graphs [105.60961114312686]
既存のディープニューラルネットワーク手法では、隣接行列を構築することで、$Omega(n2)$複雑さを必要とする。
我々は,この空間を利用して完全隣接行列を生成する新しい自己回帰モデルBiGGを開発した。
トレーニング中、この自己回帰モデルは$O(log n)$同期ステージで並列化できる。
論文 参考訳(メタデータ) (2020-06-28T04:37:57Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。