論文の概要: Tracking Finite-Time Lyapunov Exponents to Robustify Neural ODEs
- arxiv url: http://arxiv.org/abs/2602.09613v1
- Date: Tue, 10 Feb 2026 10:04:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-11 20:17:43.487071
- Title: Tracking Finite-Time Lyapunov Exponents to Robustify Neural ODEs
- Title(参考訳): ニューラルネットワークのロバスト化のための有限時間リアプノフ指数の追跡
- Authors: Tobias Wöhrer, Christian Kuehn,
- Abstract要約: 有限時間リアプノフ指数(FTLE)が入力出力ダイナミクスの強力なオーガナイザであることを示す。
FTLE正則化によりロバスト性を向上させる新しいトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate finite-time Lyapunov exponents (FTLEs), a measure for exponential separation of input perturbations, of deep neural networks within the framework of continuous-depth neural ODEs. We demonstrate that FTLEs are powerful organizers for input-output dynamics, allowing for better interpretability and the comparison of distinct model architectures. We establish a direct connection between Lyapunov exponents and adversarial vulnerability, and propose a novel training algorithm that improves robustness by FTLE regularization. The key idea is to suppress exponents far from zero in the early stage of the input dynamics. This approach enhances robustness and reduces computational cost compared to full-interval regularization, as it avoids a full ``double'' backpropagation.
- Abstract(参考訳): 本研究では, 入力摂動の指数的分離のための有限時間リアプノフ指数(FTLE)について, 連続深部ニューラルネットワークの枠組み内での深部ニューラルネットワークについて検討する。
FTLEはインプット・アウトプット・ダイナミクスの強力なオーガナイザであり、より優れた解釈可能性と異なるモデルアーキテクチャの比較を可能にすることを実証する。
我々は、Lyapunov指数と敵対的脆弱性の直接的な接続を確立し、FTLE正則化により堅牢性を向上させる新しいトレーニングアルゴリズムを提案する。
鍵となる考え方は、入力力学の初期段階においてゼロから遠く離れた指数を抑えることである。
このアプローチは、完全な ``double'' のバックプロパゲーションを避けるため、フルインターバル正規化よりも堅牢性を高め、計算コストを削減する。
関連論文リスト
- Causal Autoregressive Diffusion Language Model [70.7353007255797]
CARDは厳密な因果注意マスク内の拡散過程を再構成し、単一の前方通過で密集した1対1の監視を可能にする。
我々の結果は,CARDが並列生成のレイテンシの利点を解放しつつ,ARMレベルのデータ効率を実現することを示す。
論文 参考訳(メタデータ) (2026-01-29T17:38:29Z) - DeepDFA: Automata Learning through Neural Probabilistic Relaxations [2.3326951882644553]
本稿では,決定論的有限オートマタ(DFA)をトレースから識別する新しい手法であるDeepDFAを紹介する。
DFAとリカレントニューラルネットワーク(RNN)の確率的緩和にインスパイアされた当社のモデルは、複雑性の低減とトレーニング効率の向上とともに、トレーニング後の解釈可能性を提供する。
論文 参考訳(メタデータ) (2024-08-16T09:30:36Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
偏微分方程式に基づく動的逆問題に対する明示的運動正規化器の導入の利点を示す。
また、ニューラルネットワークをグリッドベースの解法と比較し、前者はPSNRで後者より優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T13:07:29Z) - A network-constrain Weibull AFT model for biomarkers discovery [0.0]
AFTNetはWeibullAccelerated failure time (AFT)モデルに基づくネットワーク制約サバイバル分析手法である。
本稿では,近位勾配法に基づく効率的な反復計算アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-28T11:12:53Z) - Structured Optimal Variational Inference for Dynamic Latent Space Models [16.531262817315696]
動的ネットワークの潜在空間モデルについて検討し、その目的は、ペアの内積と潜在位置のインターセプトを推定することである。
後部推論と計算スケーラビリティのバランスをとるために、構造的平均場変動推論フレームワークを検討する。
論文 参考訳(メタデータ) (2022-09-29T22:10:42Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - LyaNet: A Lyapunov Framework for Training Neural ODEs [59.73633363494646]
制御理論的リアプノフ条件を用いて常微分方程式を訓練する手法を提案する。
我々のアプローチはLyaNetと呼ばれ、推論ダイナミクスを正しい予測に迅速に収束させる新しいLyapunov損失定式化に基づいている。
論文 参考訳(メタデータ) (2022-02-05T10:13:14Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。