論文の概要: Convergence Rates for Distribution Matching with Sliced Optimal Transport
- arxiv url: http://arxiv.org/abs/2602.10691v1
- Date: Wed, 11 Feb 2026 09:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.661915
- Title: Convergence Rates for Distribution Matching with Sliced Optimal Transport
- Title(参考訳): スライス最適輸送による配電系統の収束速度
- Authors: Gauthier Thurin, Claire Boyer, Kimia Nadjahi,
- Abstract要約: そこで本研究では,スライス最適輸送に基づく分散マッチングの効率的な反復手法であるスライスマッチング方式について検討する。
鍵となる課題は、これらの不等式における定数の軌道に沿って制御することである。
ガウス分布に対して、このことがトラクタブルであることが示される。
- 参考スコア(独自算出の注目度): 10.117027375572627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the slice-matching scheme, an efficient iterative method for distribution matching based on sliced optimal transport. We investigate convergence to the target distribution and derive quantitative non-asymptotic rates. To this end, we establish __ojasiewicz-type inequalities for the Sliced-Wasserstein objective. A key challenge is to control along the trajectory the constants in these inequalities. We show that this becomes tractable for Gaussian distributions. Specifically, eigenvalues are controlled when matching along random orthonormal bases at each iteration. We complement our theory with numerical experiments and illustrate the predicted dependence on dimension and step-size, as well as the stabilizing effect of orthonormal-basis sampling.
- Abstract(参考訳): そこで本研究では,スライス最適輸送に基づく分散マッチングの効率的な反復手法であるスライスマッチング方式について検討する。
対象分布の収束について検討し, 定量的非漸近速度を導出する。
この目的のために、スライス・ワッサーシュタイン目的に対する__ojasiewicz型不等式を確立する。
鍵となる課題は、これらの不等式における定数の軌道に沿って制御することである。
ガウス分布に対して、このことがトラクタブルであることが示される。
具体的には、固有値は各反復においてランダムな正規直交基底に沿ってマッチングするときに制御される。
我々は,本理論を数値実験で補完し,次元と段差の予測依存性と正則基底サンプリングの安定化効果を示す。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space [8.971989179518216]
わずかに観察された経験的分布の行列を考えると、観測された行列と観測されていない行列の両方に関連する真の分布をインプットしようと試みる。
最適輸送のツールを用いて、最も近い隣人法を分布設定に一般化する。
論文 参考訳(メタデータ) (2024-10-17T00:50:17Z) - NETS: A Non-Equilibrium Transport Sampler [15.58993313831079]
我々は、Non-Equilibrium Transport Sampler (NETS)と呼ばれるアルゴリズムを提案する。
NETSはJarzynskiの平等に基づいて、重要サンプリング(AIS)の亜種と見なすことができる。
このドリフトは、様々な目的関数の最小化であり、全て偏りのない方法で推定できることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:35:38Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。