論文の概要: The Pinnacle Architecture: Reducing the cost of breaking RSA-2048 to 100 000 physical qubits using quantum LDPC codes
- arxiv url: http://arxiv.org/abs/2602.11457v1
- Date: Thu, 12 Feb 2026 00:30:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-13 21:07:25.588063
- Title: The Pinnacle Architecture: Reducing the cost of breaking RSA-2048 to 100 000 physical qubits using quantum LDPC codes
- Title(参考訳): Pinnacle Architecture:量子LDPC符号を用いたRSA-2048を10万の物理量子ビットに分割するコスト削減
- Authors: Paul Webster, Lucas Berent, Omprakash Chandra, Evan T. Hockings, Nouédyn Baspin, Felix Thomsen, Samuel C. Smith, Lawrence Z. Cohen,
- Abstract要約: このアーキテクチャは、量子低密度パリティチェック(QLDPC)コードを用いて、普遍的でフォールトトレラントな量子計算を可能にする。
2048ビットのRSA整数は、物理誤り率10~3ドル、コードサイクル時間1~3s、リアクション時間10~3sから10万ビット未満の物理量子ビットで分解可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realisation of utility-scale quantum computing inextricably depends on the design of practical, low-overhead fault-tolerant architectures. We introduce the \textit{Pinnacle Architecture}, which uses quantum low-density parity check (QLDPC) codes to allow for universal, fault-tolerant quantum computation with a spacetime overhead significantly smaller than that of any competing architecture. With this architecture, we show that 2048-bit RSA integers can be factored with less than one hundred thousand physical qubits, given a physical error rate of $10^{-3}$, code cycle time of $1$ \textmu s and a reaction time of $10$ \textmu s. We thereby demonstrate the feasibility of utility-scale quantum computing with an order of magnitude fewer physical qubits than has previously been believed necessary.
- Abstract(参考訳): ユーティリティスケール量子コンピューティングの実現は、実用的で低オーバーヘッドなフォールトトレラントアーキテクチャの設計に依存している。
本稿では, 量子低密度パリティチェック(QLDPC)符号を用いて, 時空オーバヘッドが競合アーキテクチャのそれよりもはるかに小さい万能なフォールトトレラントな量子計算を実現するための, \textit{Pinnacle Architecture}を提案する。
このアーキテクチャにより、2048ビットのRSA整数は、物理誤差率10-3$、コードサイクル時間$1$ \textmu s、リアクション時間$10$ \textmu sから10000ビット未満の物理量子ビットで分解できることが示される。
これにより、これまで考えられていたよりもはるかに少ない物理量子ビットのオーダーで、実用規模の量子コンピューティングの実現可能性を示す。
関連論文リスト
- Extractors: QLDPC Architectures for Efficient Pauli-Based Computation [39.98920557126034]
本稿では,任意のQLDPCメモリをPauliベースの計算に適した計算ブロックに拡張できる新しいプリミティブを提案する。
特に、メモリ上でサポートされている任意の論理パウリ演算子は、1つの論理サイクルでフォールトトレラントに測定できる。
我々のアーキテクチャは並列論理的測定により普遍的な量子回路を実装できる。
論文 参考訳(メタデータ) (2025-03-13T14:07:40Z) - Optimizing Multi-level Magic State Factories for Fault-Tolerant Quantum Architectures [0.8453577061453568]
専用ゾーンをマルチレベルマジックステートファクトリと,効率的な論理演算のためのコアプロセッサとして考える。
物理量子資源推定は、少数の鍵パラメータを含む単純なモデルに還元されることを示す。
論文 参考訳(メタデータ) (2024-11-06T21:25:34Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
再構成可能な原子配列上の高速qLDPC符号を用いて、フォールトトレラントな量子計算を行うハードウェア効率の手法を提案する。
本研究は,qLDPC符号を用いた低オーバヘッド量子コンピューティングの実用化への道を開くものである。
論文 参考訳(メタデータ) (2023-08-16T19:47:17Z) - Partially Fault-tolerant Quantum Computing Architecture with
Error-corrected Clifford Gates and Space-time Efficient Analog Rotations [0.5658123802733283]
NISQとFTQCのギャップを埋めるための量子コンピューティングアーキテクチャを提案する。
初期のFTQCデバイスでは、約1.72ドル 107ドル クリフォード演算と3.75ドル 104ドル 任意の回転を64個の論理量子ビット上で行うことができる。
論文 参考訳(メタデータ) (2023-03-23T11:21:41Z) - A High Performance Compiler for Very Large Scale Surface Code Computations [38.26470870650882]
大規模量子誤り訂正のための最初の高性能コンパイラを提案する。
任意の量子回路を格子手術に基づく表面符号演算に変換する。
コンパイラは、物理デバイスのリアルタイム操作に向けられた速度で、ストリーミングパイプラインを使用して数百万のゲートを処理することができる。
論文 参考訳(メタデータ) (2023-02-05T19:06:49Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
フォトニック核融合型量子コンピューティング(FBQC)は低損失フォトニック遅延を用いる。
FBQCのモジュールアーキテクチャとして,これらのコンポーネントを結合して「インターリービングモジュール」を形成するアーキテクチャを提案する。
遅延の乗法的パワーを行使すると、各加群はヒルベルト空間に数千の物理量子ビットを加えることができる。
論文 参考訳(メタデータ) (2021-03-15T18:00:06Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
本稿では,外部量子誤り訂正符号を用いた猫符号に基づくフォールトトレラント量子コンピュータを提案する。
我々は、外符号が繰り返し符号か薄い矩形曲面符号である場合、量子誤差補正を数値的にシミュレートする。
約1,000の超伝導回路部品で、フォールトトレラントな量子コンピュータを構築することができる。
論文 参考訳(メタデータ) (2020-12-07T23:22:40Z) - Quantum error mitigation as a universal error-minimization technique:
applications from NISQ to FTQC eras [0.9622115055919379]
フォールトトレラント量子コンピューティング(FTQC)の初期においては、利用可能なコード距離とマジックステートの数を制限する。
本稿では、量子誤り訂正と量子誤り軽減を効率的なFTQCアーキテクチャに統合する。
この方式は、必要な計算オーバーヘッドを劇的に軽減し、FTQC時代の到来を早める。
論文 参考訳(メタデータ) (2020-10-08T10:27:29Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。