論文の概要: Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays
- arxiv url: http://arxiv.org/abs/2308.08648v1
- Date: Wed, 16 Aug 2023 19:47:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 18:55:47.529908
- Title: Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays
- Title(参考訳): 再構成可能なアトムアレイを用いた定常オーバーヘッドフォールトトレラント量子計算
- Authors: Qian Xu, J. Pablo Bonilla Ataides, Christopher A. Pattison, Nithin
Raveendran, Dolev Bluvstein, Jonathan Wurtz, Bane Vasic, Mikhail D. Lukin,
Liang Jiang, and Hengyun Zhou
- Abstract要約: 再構成可能な原子配列上の高速qLDPC符号を用いて、フォールトトレラントな量子計算を行うハードウェア効率の手法を提案する。
本研究は,qLDPC符号を用いた低オーバヘッド量子コンピューティングの実用化への道を開くものである。
- 参考スコア(独自算出の注目度): 5.542275446319411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum low-density parity-check (qLDPC) codes can achieve high encoding
rates and good code distance scaling, providing a promising route to
low-overhead fault-tolerant quantum computing. However, the long-range
connectivity required to implement such codes makes their physical realization
challenging. Here, we propose a hardware-efficient scheme to perform
fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable
atom arrays, directly compatible with recently demonstrated experimental
capabilities. Our approach utilizes the product structure inherent in many
qLDPC codes to implement the non-local syndrome extraction circuit via atom
rearrangement, resulting in effectively constant overhead in practically
relevant regimes. We prove the fault tolerance of these protocols, perform
circuit-level simulations of memory and logical operations with these codes,
and find that our qLDPC-based architecture starts to outperform the surface
code with as few as several hundred physical qubits at a realistic physical
error rate of $10^{-3}$. We further find that less than 3000 physical qubits
are sufficient to obtain over an order of magnitude qubit savings compared to
the surface code, and quantum algorithms involving thousands of logical qubits
can be performed using less than $10^5$ physical qubits. Our work paves the way
for explorations of low-overhead quantum computing with qLDPC codes at a
practical scale, based on current experimental technologies.
- Abstract(参考訳): 量子低密度パリティチェック(qLDPC)符号は高い符号化レートと優れたコード距離のスケーリングを実現し、低オーバーヘッドフォールトトレラント量子コンピューティングへの有望な経路を提供する。
しかし、そのようなコードを実装するのに必要な長距離接続は、物理的な実現を困難にしている。
本稿では、再構成可能な原子配列上での高速qLDPC符号を用いたフォールトトレラント量子計算を行うハードウェア効率のよい手法を提案する。
提案手法は,多くのqLDPC符号に固有の積構造を利用して,原子再構成による非局所症候群抽出回路を実装し,実用上,一定のオーバーヘッドが生じる。
我々はこれらのプロトコルのフォールトトレランスを証明し、メモリと論理演算の回路レベルシミュレーションを行い、qLDPCベースのアーキテクチャが現実的な物理誤差率10-3$で数百の物理量子ビットで表面コードを上回り始めることを発見した。
さらに、3000以上の物理量子ビットは、表面符号と比較して1桁以上の量子ビットの節約が得られるのに十分であり、数千の論理量子ビットを含む量子アルゴリズムは10^5$物理量子ビット以下で行うことができる。
我々の研究は、現在の実験技術に基づいて、qLDPC符号を用いた低オーバヘッド量子コンピューティングの実用化の道を開いた。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
量子ビット数と制御複雑性の緩やかなオーバーヘッドを持つ高速量子誤り訂正(QEC)符号は、フォールトトレラント量子コンピューティングには望ましい。
オープンバウンダリを持つ2次元静的中性原子キュービットアーキテクチャにこれらのコードを組み込む方法を示す。
論文 参考訳(メタデータ) (2024-04-19T17:14:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
量子誤り訂正符号(Quantum error-correcting codes, QECCs)は、量子アルゴリズムの実行の大きな障害である量子ノイズの負の効果を排除できる。
回転曲面符号(RSC)に対するFTQECの要件を満たすスケーラブルで高速でプログラム可能なニューラルデコーディングシステムを提案する。
本システムでは,197 nsのデコード遅延を極端に低くし,その精度はMWPMに近い。
論文 参考訳(メタデータ) (2023-05-25T06:23:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
我々はQLDPC符号を用いてGHZ状態を蒸留し、その結果、高忠実度論理GHZ状態は分散量子コンピューティングに使用されるコードと直接対話することができる。
本研究は,大規模GHZ状態にも適用し,拡張性のあるGHZ浄化プロトコルを構築するために,3$-qubit GHZ状態の測定特性に関する技術的結果を拡張した。
論文 参考訳(メタデータ) (2022-10-25T16:42:32Z) - Low-overhead fault-tolerant quantum computing using long-range
connectivity [2.867517731896504]
量子低密度パリティチェック符号に基づく低オーバーヘッドフォールトトレラント量子計算のためのスキーム
本稿では,100個の論理量子ビットの処理におけるオーバヘッドのオーダー・オブ・マグニチュードの改善を推定する。
論文 参考訳(メタデータ) (2021-10-20T21:49:48Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Quantum error mitigation as a universal error-minimization technique:
applications from NISQ to FTQC eras [0.9622115055919379]
フォールトトレラント量子コンピューティング(FTQC)の初期においては、利用可能なコード距離とマジックステートの数を制限する。
本稿では、量子誤り訂正と量子誤り軽減を効率的なFTQCアーキテクチャに統合する。
この方式は、必要な計算オーバーヘッドを劇的に軽減し、FTQC時代の到来を早める。
論文 参考訳(メタデータ) (2020-10-08T10:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。