論文の概要: Spectral Convolution on Orbifolds for Geometric Deep Learning
- arxiv url: http://arxiv.org/abs/2602.14997v1
- Date: Mon, 16 Feb 2026 18:28:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-17 16:22:50.626798
- Title: Spectral Convolution on Orbifolds for Geometric Deep Learning
- Title(参考訳): 幾何学的深層学習のためのオービフォールドのスペクトル畳み込み
- Authors: Tim Mangliers, Bernhard Mössner, Benjamin Himpel,
- Abstract要約: Geometric Deep Learning (GDL)はユークリッド構造を超えたデータドメインの教師付き学習を扱う。
本稿では,オービフォールド上のスペクトル畳み込みの概念を紹介する。
GDLを使ってオービフォールドで構造化されたデータを学習するためのビルディングブロックを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric deep learning (GDL) deals with supervised learning on data domains that go beyond Euclidean structure, such as data with graph or manifold structure. Due to the demand that arises from application-related data, there is a need to identify further topological and geometric structures with which these use cases can be made accessible to machine learning. There are various techniques, such as spectral convolution, that form the basic building blocks for some convolutional neural network-like architectures on non-Euclidean data. In this paper, the concept of spectral convolution on orbifolds is introduced. This provides a building block for making learning on orbifold structured data accessible using GDL. The theory discussed is illustrated using an example from music theory.
- Abstract(参考訳): Geometric Deep Learning (GDL) はユークリッド構造を超えるデータ領域、例えばグラフや多様体構造を持つデータに関する教師あり学習を扱う。
アプリケーション関連のデータから生じる需要のため、これらのユースケースが機械学習にアクセスできるような、さらなるトポロジ的および幾何学的構造を特定する必要がある。
スペクトル畳み込みのような様々な技術があり、非ユークリッドデータ上の畳み込みニューラルネットワークのようなアーキテクチャの基本的な構成要素を形成する。
本稿では,オービフォールド上のスペクトル畳み込みの概念を紹介する。
これにより、GDLを使ってオービフォールドで構造化されたデータを学習するためのビルディングブロックが提供される。
音楽理論の例を例に、論じる。
関連論文リスト
- Dissecting embedding method: learning higher-order structures from data [0.0]
データ学習のための幾何学的深層学習法は、しばしば特徴空間の幾何学に関する仮定のセットを含む。
これらの仮定と、データが離散的で有限であるという仮定は、いくつかの一般化を引き起こし、データとモデルの出力の間違った解釈を生み出す可能性がある。
論文 参考訳(メタデータ) (2024-10-14T08:19:39Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Representation Learning via Manifold Flattening and Reconstruction [10.823557517341964]
本研究では,組込み部分多様体の線形化と再構成を行うニューラルネットワークのペアを明示的に構築するアルゴリズムを提案する。
このような生成されたニューラルネットワークは、FlatNet(FlatNet)と呼ばれ、理論的に解釈可能であり、大規模に計算可能であり、データをテストするためにうまく一般化されている。
論文 参考訳(メタデータ) (2023-05-02T20:36:34Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
本稿では,多様体畳み込みフィルタと点次非線形性からなる多様体ニューラルネットワーク(MNN)を提案する。
要約すると、我々は大きなグラフの極限として多様体モデルに焦点を合わせ、MNNを構築するが、それでもMNNの離散化によってグラフニューラルネットワークを復活させることができる。
論文 参考訳(メタデータ) (2022-10-01T21:17:39Z) - Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders [45.29194877564103]
本研究は、クラスラベルなどの半教師付き情報を付加できる非対称符号化復号プロセスを備えたチャートオートエンコーダを導入する。
このようなネットワークの近似力を議論し、周囲空間の次元ではなく、本質的にデータ多様体の内在次元に依存する境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T19:58:03Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。