Quantum-classical phase transition with spontaneous superposition breaking (basic characteristics)
- URL: http://arxiv.org/abs/1007.2538v9
- Date: Wed, 27 Mar 2024 19:01:19 GMT
- Title: Quantum-classical phase transition with spontaneous superposition breaking (basic characteristics)
- Authors: Vladan Pankovic,
- Abstract summary: collapse as an effective (non-absolute) phenomena can be considered as an especial case of the general formalism of spontaneous symmetry breaking.
Quantum mechanics represents a natural bridge between classical mechanics and quantum field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we consider basic characteristics of a quantum-classical continuous phase transition with spontaneous (non-dynamical) unitary symmetry (superposition) breaking (effective hiding). We clearly demonstrate that collapse (transition from superposition in corresponding statistical mixture of quantum states of measured quantum system by measurement or detection realized by appropriate measuring apparatus) represents in fact mentioned phase transition. Practically, collapse as an effective (non-absolute) phenomena can be considered as an especial case of the general formalism of spontaneous symmetry breaking (with applications in many different domains of the physics, e.g. in elasticity of rigid bodies, quantum theory of ferromagnetism, quantum theory of electro-weak interactions as well as in chaotic inflation cosmology), All this admits simple solution of the quantum mechanics foundation problem. Quantum mechanics (without any super-luminal dynamical effects) represents a natural bridge between classical mechanics and quantum field theory.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Exact-WKB analysis for SUSY and quantum deformed potentials: Quantum
mechanics with Grassmann fields and Wess-Zumino terms [0.0]
Quantum deformed potentials arise naturally in quantum mechanical systems of one bosonic coordinate coupled to $N_f$ Grassmann valued fermionic coordinates.
Using exact WKB, we derive exact quantization condition and its median resummation.
For quantum deformed triple-well potential, we demonstrate the P-NP relation, by computing period integrals and Mellin transform.
arXiv Detail & Related papers (2021-11-10T20:35:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Equivalence between classical epidemic model and non-dissipative and
dissipative quantum tight-binding model [0.0]
equivalence between classical epidemic model and nondissipative and dissipative quantum tight-binding model is derived.
Classical epidemic model can reproduce the quantum entanglement emerging in the case of electrostatically coupled qubits.
arXiv Detail & Related papers (2020-12-17T20:37:51Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.