論文の概要: Controlling Recurrent Neural Networks by Conceptors
- arxiv url: http://arxiv.org/abs/1403.3369v4
- Date: Sun, 17 Nov 2024 14:20:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-01 04:42:44.527725
- Title: Controlling Recurrent Neural Networks by Conceptors
- Title(参考訳): コンセプタによるリカレントニューラルネットワークの制御
- Authors: Herbert Jaeger,
- Abstract要約: 本稿では, 非線形力学と概念抽象と論理の基本原理を結合した, 概念論という, 神経力学の機構を提案する。
単一のニューラルネットワーク内の多数の動的パターンを学習、保存、抽象化、フォーカス、モーフィック、一般化、デノイズ化、認識することが可能になります。
- 参考スコア(独自算出の注目度): 0.5439020425818999
- License:
- Abstract: The human brain is a dynamical system whose extremely complex sensor-driven neural processes give rise to conceptual, logical cognition. Understanding the interplay between nonlinear neural dynamics and concept-level cognition remains a major scientific challenge. Here I propose a mechanism of neurodynamical organization, called conceptors, which unites nonlinear dynamics with basic principles of conceptual abstraction and logic. It becomes possible to learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of dynamical patterns within a single neural system; novel patterns can be added without interfering with previously acquired ones; neural noise is automatically filtered. Conceptors help explaining how conceptual-level information processing emerges naturally and robustly in neural systems, and remove a number of roadblocks in the theory and applications of recurrent neural networks.
- Abstract(参考訳): 人間の脳は、非常に複雑なセンサー駆動の神経プロセスが概念的、論理的認知を引き起こす力学系である。
非線形神経力学と概念レベルの認知の相互作用を理解することは、依然として大きな科学的課題である。
本稿では,非線形力学を概念的抽象と論理の基本原理と結合する概念論という,神経力学の機構を提案する。
単一のニューラルネットワーク内の多数の動的パターンを学習、保存、抽象、焦点、形態、一般化、デノイズ化、認識することが可能になる。
概念は、概念レベルの情報処理がニューラルネットワークにおいて自然かつ堅牢にどのように出現するかを説明するのに役立ち、リカレントニューラルネットワークの理論と応用における多くの障害を取り除く。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Decoding Interpretable Logic Rules from Neural Networks [8.571176778812038]
本稿では,ニューラルネットワークから解釈可能な論理規則を復号化するための新しいアプローチであるNeuroLogicを紹介する。
NeuroLogicは幅広いニューラルネットワークに適応することができる。
NeuroLogicはニューラルネットワークのブラックボックスの性質を理解するのに役立ちます。
論文 参考訳(メタデータ) (2025-01-14T17:57:26Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方において、ニューロン間の'結合'が競合学習の形式につながることは長年知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、推論など、幅広いタスクに性能改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
概念は学習と推論の自然な結びつきとして機能する。
知識はニューラルネットワークから抽出できるだけでなく、概念知識をニューラルネットワークアーキテクチャに挿入することもできる。
論文 参考訳(メタデータ) (2023-10-18T11:08:02Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
メカニクスにおいて、物理インフォームドニューラルネットワークの新しい活発な分野は、機械的知識に基づいてディープニューラルネットワークを設計することによって、この欠点を緩和しようとする。
本論文では,機械データに訓練されたニューラルネットワークを後述する物理形成型アプローチへの第一歩を提案する。
これにより、主成分分析はRNNの細胞状態における分散表現をデコレーションし、既知の基本関数との比較を可能にする。
論文 参考訳(メタデータ) (2021-04-20T18:38:52Z) - A neural network model of perception and reasoning [0.0]
生物学的に一貫した構成原理の単純なセットが神経ネットワークにこれらの能力を与えることを示す。
我々はこれらの原理を、最適化の代わりに概念構築に基づく新しい機械学習アルゴリズムで実装し、説明可能なニューロン活動で推論されるディープニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-02-26T06:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。