Implementation of Continuous-Variable Quantum Key Distribution with Composable and One-Sided-Device-Independent Security Against Coherent Attacks
- URL: http://arxiv.org/abs/1406.6174v4
- Date: Mon, 11 Nov 2024 18:48:37 GMT
- Title: Implementation of Continuous-Variable Quantum Key Distribution with Composable and One-Sided-Device-Independent Security Against Coherent Attacks
- Authors: Tobias Gehring, Vitus Händchen, Jörg Duhme, Fabian Furrer, Torsten Franz, Christoph Pacher, Reinhard F. Werner, Roman Schnabel,
- Abstract summary: State-of-the-art quantum key distribution requires composable security against coherent attacks.
We present an implementation of continuous-variable quantum key distribution satisfying these requirements.
Our work is a crucial step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
- Score: 0.0
- License:
- Abstract: Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side-channels. Here, we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memory-free attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a crucial step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Experimental Quantum Byzantine Agreement on a Three-User Quantum Network with Integrated Photonics [13.10577231578478]
Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption.
Here, we establish a polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source.
We provide the first experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification.
arXiv Detail & Related papers (2024-03-18T03:29:18Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Deploying hybrid quantum-secured infrastructure for applications: When
quantum and post-quantum can work together [0.8702432681310401]
Quantum key distribution is secure against unforeseen technological developments.
Post-quantum cryptography is believed to be secure even against attacks with both classical and quantum computing technologies.
Various directions in the further development of the full-stack quantum-secured infrastructure are also indicated.
arXiv Detail & Related papers (2023-04-10T13:44:21Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - A coherence-witnessing game and applications to semi-device-independent
quantum key distribution [1.024113475677323]
We introduce a coherence-based, semi-device-independent, semi-quantum key distribution protocol built upon a noise-robust version of a coherence equality game.
Security is proven in the bounded quantum storage model, requiring users to implement only classical operations.
arXiv Detail & Related papers (2021-03-11T17:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.