論文の概要: Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index
- arxiv url: http://arxiv.org/abs/1603.09326v4
- Date: Wed, 3 Apr 2024 03:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-07 23:24:36.916756
- Title: Estimating Treatment Effects using Multiple Surrogates: The Role of the Surrogate Score and the Surrogate Index
- Title(参考訳): 複数のサロゲートを用いた治療効果の推定:サロゲートスコアとサロゲート指標の役割
- Authors: Susan Athey, Raj Chetty, Guido Imbens, Hyunseung Kang,
- Abstract要約: 治療の長期的な効果を見積もるのは、多くの分野において興味深いことである。
一つのアプローチは、しばしば統計代理と呼ばれる中間結果に対する治療効果を分析することである。
- 参考スコア(独自算出の注目度): 4.154846138501937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating the long-term effects of treatments is of interest in many fields. A common challenge in estimating such treatment effects is that long-term outcomes are unobserved in the time frame needed to make policy decisions. One approach to overcome this missing data problem is to analyze treatments effects on an intermediate outcome, often called a statistical surrogate, if it satisfies the condition that treatment and outcome are independent conditional on the statistical surrogate. The validity of the surrogacy condition is often controversial. Here we exploit that fact that in modern datasets, researchers often observe a large number, possibly hundreds or thousands, of intermediate outcomes, thought to lie on or close to the causal chain between the treatment and the long-term outcome of interest. Even if none of the individual proxies satisfies the statistical surrogacy criterion by itself, using multiple proxies can be useful in causal inference. We focus primarily on a setting with two samples, an experimental sample containing data about the treatment indicator and the surrogates and an observational sample containing information about the surrogates and the primary outcome. We state assumptions under which the average treatment effect be identified and estimated with a high-dimensional vector of proxies that collectively satisfy the surrogacy assumption, and derive the bias from violations of the surrogacy assumption, and show that even if the primary outcome is also observed in the experimental sample, there is still information to be gained from using surrogates.
- Abstract(参考訳): 治療の長期的な効果を見積もるのは、多くの分野において興味深いことである。
このような治療効果を推定する一般的な課題は、政策決定に必要な時間枠で長期的な成果が守られないことである。
この欠落したデータ問題を解決する1つのアプローチは、治療と結果が統計的代理の独立条件である条件を満たす場合、しばしば統計代理と呼ばれる中間結果に対する治療効果を分析することである。
代理状態の妥当性はしばしば議論の余地がある。
ここでは、現代のデータセットにおいて、研究者は治療と長期の利益の間の因果関係にかかわると考えられる中間的な結果の数十から数千の多数を観察することが多いという事実を活用する。
個々のプロキシが統計的代理基準を満足していないとしても、複数のプロキシを使用することは因果推論に有用である。
本研究は, 主に, 治療指標とサロゲートに関するデータを含む実験試料と, サロゲートに関する情報を含む観察試料と, 一次結果を含む2つの試料のセットに焦点を当てた。
平均処理効果をサロゲイト仮定を総合的に満足するプロキシの高次元ベクトルで同定・推定し、サロゲイト仮定の違反からバイアスを導出し、実験例でも一次結果が観察されたとしても、サロゲイトの使用から得られる情報が存在することを示す。
関連論文リスト
- Continuous Treatment Effects with Surrogate Outcomes [12.548638259932915]
持続的治療効果の予測におけるサロゲートの役割について検討した。
そこで本研究では,サロゲートを効率的に分析に組み込む2つの頑健な手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T20:50:18Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
既存の研究では、プロキシ変数や複数の処理を利用してバイアスを補正している。
多くの実世界のシナリオでは、複数の結果に対する影響を研究することにより大きな関心がある。
この設定に関わる複数の結果の並列研究は、因果同定において互いに助け合うことが示されている。
論文 参考訳(メタデータ) (2023-09-29T14:33:48Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Estimating long-term causal effects from short-term experiments and
long-term observational data with unobserved confounding [5.854757988966379]
実験データと観測データの両方が利用可能である場合の長期治療効果の同定と推定について検討した。
我々の長期因果効果推定器は、回帰残差と短期実験結果を組み合わせることで得られる。
論文 参考訳(メタデータ) (2023-02-21T12:22:47Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
本研究では、観察領域と実験領域のデータを用いて、治療変数の長期的な結果変数に対する因果効果を推定するタスクについて検討する。
観測データは共起していると考えられており、さらなる仮定なしでは、このデータセットは因果推論にも使用できない。
論文 参考訳(メタデータ) (2022-01-26T04:21:14Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
患者予後に対する介入の効果を推定することは、パーソナライズされた医療の重要な側面の1つである。
時間から時間までのデータは、治療最適化にはほとんど使われない。
我々は、治療特異的な半パラメトリックコックス損失と治療バランスの深いディープニューラルネットワークを組み合わせたBITESというアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-05T10:39:31Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Split-Treatment Analysis to Rank Heterogeneous Causal Effects for
Prospective Interventions [15.443178111068418]
本研究は,予防的介入の可能性が最も高い個人をランク付けする分割処理分析法を提案する。
プロキシ処理に基づく異種因果効果のランキングは,対象治療の効果に基づく順位と同じであることを示す。
論文 参考訳(メタデータ) (2020-11-11T16:17:29Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。