Memory Based Collaborative Filtering with Lucene
- URL: http://arxiv.org/abs/1607.00223v2
- Date: Mon, 18 Nov 2024 07:36:40 GMT
- Title: Memory Based Collaborative Filtering with Lucene
- Authors: Claudio Gennaro,
- Abstract summary: Memory Based Collaborative Filtering is a widely used approach to provide recommendations.
A disadvantage of this approach is the loss of generality and flexibility of the general collaborative filtering systems.
We have developed a methodology that allows one to build a scalable and effective collaborative filtering system on top of a conventional full-text search engine.
- Score: 2.7170928704980253
- License:
- Abstract: Memory Based Collaborative Filtering is a widely used approach to provide recommendations. It exploits similarities between ratings across a population of users by forming a weighted vote to predict unobserved ratings. Bespoke solutions are frequently adopted to deal with the problem of high quality recommendations on large data sets. A disadvantage of this approach, however, is the loss of generality and flexibility of the general collaborative filtering systems. In this paper, we have developed a methodology that allows one to build a scalable and effective collaborative filtering system on top of a conventional full-text search engine such as Apache Lucene.
Related papers
- An Efficient Multi-threaded Collaborative Filtering Approach in Recommendation System [0.0]
This research focuses on building a scalable recommendation system capable of handling numerous users efficiently.
A multithreaded similarity approach is employed to achieve this, where users are divided into independent threads that run in parallel.
This parallelization significantly reduces computation time compared to traditional methods, resulting in a faster, more efficient, and scalable recommendation system.
arXiv Detail & Related papers (2024-09-28T06:33:18Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
arXiv Detail & Related papers (2023-02-21T10:06:01Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
In rank aggregation problems, users exhibit various accuracy levels when comparing pairs of items.
We propose an elimination-based active sampling strategy, which estimates the ranking of items via noisy pairwise comparisons.
We prove that our algorithm can return the true ranking of items with high probability.
arXiv Detail & Related papers (2021-10-08T13:51:55Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
We show that matrix factorization-based collaborative filtering algorithms induce a kind of stereotyping.
If preferences for a textitset of items are anti-correlated in the general user population, then those items may not be recommended together to a user.
We propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user.
arXiv Detail & Related papers (2021-06-23T18:37:47Z) - BanditMF: Multi-Armed Bandit Based Matrix Factorization Recommender
System [0.0]
Multi-armed bandits (MAB) provide a principled online learning approach to attain the balance between exploration and exploitation.
collaborative filtering (CF) is arguably the earliest and most influential method in the recommender system.
BanditMF is designed to address two challenges in the multi-armed bandits algorithm and collaborative filtering.
arXiv Detail & Related papers (2021-06-21T07:35:39Z) - Modurec: Recommender Systems with Feature and Time Modulation [50.51144496609274]
We propose Modurec: an autoencoder-based method that combines all available information using the feature-wise modulation mechanism.
We show on Movielens datasets that these modifications produce state-of-the-art results in most evaluated settings.
arXiv Detail & Related papers (2020-10-13T09:18:33Z) - Dependency Aware Filter Pruning [74.69495455411987]
Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost.
Previous work prunes filters according to their weight norms or the corresponding batch-norm scaling factors.
We propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity.
arXiv Detail & Related papers (2020-05-06T07:41:22Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.