A unified framework for hard and soft clustering with regularized optimal transport
- URL: http://arxiv.org/abs/1711.04366v2
- Date: Thu, 7 Mar 2024 20:43:31 GMT
- Title: A unified framework for hard and soft clustering with regularized optimal transport
- Authors: Jean-Frédéric Diebold, Nicolas Papadakis, Arnaud Dessein, Charles-Alban Deledalle,
- Abstract summary: In this paper, we formulate the problem of inferring a Finitelamblambdageq 0 from discrete data as an optimal transport problem with entropic regularization.
- Score: 5.715859759904031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we formulate the problem of inferring a Finite Mixture Model from discrete data as an optimal transport problem with entropic regularization of parameter $\lambda\geq 0$. Our method unifies hard and soft clustering, the Expectation-Maximization (EM) algorithm being exactly recovered for $\lambda=1$. The family of clustering algorithm we propose rely on the resolution of nonconvex problems using alternating minimization. We study the convergence property of our generalized $\lambda-$EM algorithms and show that each step in the minimization process has a closed form solution when inferring finite mixture models of exponential families. Experiments highlight the benefits of taking a parameter $\lambda>1$ to improve the inference performance and $\lambda\to 0$ for classification.
Related papers
- An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - On the Global Solution of Soft k-Means [159.23423824953412]
This paper presents an algorithm to solve the Soft k-Means problem globally.
A new model, named Minimal Volume Soft kMeans (MVSkM), is proposed to address solutions non-uniqueness issue.
arXiv Detail & Related papers (2022-12-07T12:06:55Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
arXiv Detail & Related papers (2020-02-20T17:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.