論文の概要: Learning to Importance Sample in Primary Sample Space
- arxiv url: http://arxiv.org/abs/1808.07840v2
- Date: Fri, 22 Mar 2024 07:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 00:17:07.147396
- Title: Learning to Importance Sample in Primary Sample Space
- Title(参考訳): 一次サンプル空間における重要サンプルへの学習
- Authors: Quan Zheng, Matthias Zwicker,
- Abstract要約: 本稿では,ニューラルネットワークを用いて,サンプルの集合に代表される所望密度からサンプルを抽出する方法を学習する,新たな重要サンプリング手法を提案する。
提案手法は, 様々なシナリオにおいて, 効果的な分散低減につながることを示す。
- 参考スコア(独自算出の注目度): 22.98252856114423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.
- Abstract(参考訳): 重要サンプリングはモンテカルロレンダリングにおいて最も広く用いられている分散還元戦略の1つである。
本稿では,ニューラルネットワークを用いて,サンプルの集合に代表される所望密度からサンプルを抽出する方法を学習する,新しい重要サンプリング手法を提案する。
提案手法では,既存のモンテカルロレンダリングアルゴリズムをブラックボックスとみなす。
シーンに依存したトレーニングフェーズにおいて、最大推定値を用いて、レンダリングアルゴリズムの一次サンプル空間に所望密度のサンプルを生成することを学習する。
我々は、高次元空間における実数値非体積保存(「リアルNVP」)変換を表現するように設計された最近のニューラルネットワークアーキテクチャを活用している。
我々は、Real NVP を用いて、一次サンプル空間を非線形にワープし、所望の密度を得る。
さらに、Real NVPはワープのヤコビ行列を効率的に計算し、ワープによって入力される積分変数の変化を実装するのに必要となる。
提案手法の主な利点は、光輸送効果を生かせず、ブラックボックスとして扱うことで、既存のレンダリング技術と組み合わせることができる点である。
提案手法は, 様々なシナリオにおいて, 効果的な分散低減につながることを示す。
関連論文リスト
- Sampling weights of deep neural networks [1.2370077627846041]
完全に接続されたニューラルネットワークの重みとバイアスに対して,効率的なサンプリングアルゴリズムと組み合わせた確率分布を導入する。
教師付き学習環境では、内部ネットワークパラメータの反復最適化や勾配計算は不要である。
サンプルネットワークが普遍近似器であることを証明する。
論文 参考訳(メタデータ) (2023-06-29T10:13:36Z) - Gradient-based Wang-Landau Algorithm: A Novel Sampler for Output
Distribution of Neural Networks over the Input Space [20.60516313062773]
本稿では,グラディエントをベースとした新しい Wang-Landau (GWL) サンプリング手法を提案する。
まず、NNの出力分布と物理系の状態密度(DOS)との接続を描画する。
そこで我々は,そのランダムな提案を勾配に基づくモンテカルロ提案に置き換えることにより,DOS問題の古典的なサンプリングアルゴリズムであるワン・ランダウアルゴリズムを再構築する。
論文 参考訳(メタデータ) (2023-02-19T05:42:30Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
我々は、勾配降下(SGD)による頑健な回帰を解くためのデータ構造を導入する。
我々のアルゴリズムは、サブ線形空間を使用し、データに1回パスするだけで、SGDの$T$ステップを重要サンプリングで効果的に実行します。
論文 参考訳(メタデータ) (2022-07-16T03:09:30Z) - Active Exploration for Neural Global Illumination of Variable Scenes [6.591705508311505]
マルコフ連鎖モンテカルロを用いた新しいアクティブ探索法を提案する。
我々は、新しいシーンインスタンスのレンダリングを学習するニューラルジェネレータにアプローチを適用する。
本手法は, 硬質光輸送路のインタラクティブなレンダリングを可能にする。
論文 参考訳(メタデータ) (2022-03-15T21:45:51Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。