A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment
- URL: http://arxiv.org/abs/1901.08125v2
- Date: Tue, 29 Apr 2025 18:43:10 GMT
- Title: A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment
- Authors: Alvaro E. Ulloa Cerna, Marios Pattichis, David P. vanMaanen, Linyuan Jing, Aalpen A. Patel, Joshua V. Stough, Christopher M. Haggerty, Brandon K. Fornwalt,
- Abstract summary: We develop and validate several multimodal models that can predict 1-year mortality based on a massive clinical dataset.<n>Our focus on predicting 1-year mortality can provide a sense of urgency to the patients.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The majority of biomedical studies use limited datasets that may not generalize over large heterogeneous datasets that have been collected over several decades. The current paper develops and validates several multimodal models that can predict 1-year mortality based on a massive clinical dataset. Our focus on predicting 1-year mortality can provide a sense of urgency to the patients. Using the largest dataset of its kind, the paper considers the development and validation of multimodal models based on 25,137,015 videos associated with 699,822 echocardiography studies from 316,125 patients, and 2,922,990 8-lead electrocardiogram (ECG) traces from 631,353 patients. Our models allow us to assess the contribution of individual factors and modalities to the overall risk. Our approach allows us to develop extremely low-parameter models that use optimized feature selection based on feature importance. Based on available clinical information, we construct a family of models that are made available in the DISIML package. Overall, performance ranges from an AUC of 0.72 with just ten parameters to an AUC of 0.89 with under 105k for the full multimodal model. The proposed approach represents a modular neural network framework that can provide insights into global risk trends and guide therapies for reducing mortality risk.
Related papers
- Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus [0.0]
This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years.<n>Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk.
arXiv Detail & Related papers (2025-07-31T12:23:10Z) - Deep Survival Analysis in Multimodal Medical Data: A Parametric and Probabilistic Approach with Competing Risks [47.19194118883552]
We introduce a multimodal deep learning framework for survival analysis capable of modeling both single and competing risks scenarios.<n>We propose SAMVAE (Survival Analysis Multimodal Variational Autoencoder), a novel deep learning architecture designed for survival prediction.
arXiv Detail & Related papers (2025-07-10T14:29:48Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction [6.199310532720352]
We developed a multi-modal ensemble model (MMEM) that integrates clinical data, multi-omics data, and histopathology whole slide image (WSI) data.<n>MMEM predicted overall survival (OS) and disease-free survival (DFS) for ccRCC patients.
arXiv Detail & Related papers (2024-12-10T02:51:14Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - MixEHR-SurG: a joint proportional hazard and guided topic model for inferring mortality-associated topics from electronic health records [18.87817671852005]
We present a supervised topic model called MixEHR-SurG to simultaneously integrate heterogeneous EHR data and model survival hazard.
This leads to a highly interpretable survival topic model that can infer PheCode-specific phenotype topics associated with patient mortality.
arXiv Detail & Related papers (2023-12-20T22:13:45Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Developing and validating multi-modal models for mortality prediction in
COVID-19 patients: a multi-center retrospective study [1.5308395762165423]
We develop and validate multi-modal models for COVID-19 mortality prediction using multi-center patient data.
Our goal is to create a toolkit that would assist investigators and organizations in building multi-modal models for prediction, classification and/or optimization.
arXiv Detail & Related papers (2021-09-01T04:46:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.