Chapter: Vulnerability of Quantum Information Systems to Collective Manipulation
- URL: http://arxiv.org/abs/1901.08873v2
- Date: Thu, 11 Apr 2024 21:33:03 GMT
- Title: Chapter: Vulnerability of Quantum Information Systems to Collective Manipulation
- Authors: Fernando J. Gómez-Ruiz, Ferney J. Rodríguez, Luis Quiroga, Neil F. Johnson,
- Abstract summary: We present and discuss a new form of vulnerability in such systems.
Groups of adversaries can maximally disrupt these systems' global quantum state.
It will be almost impossible to detect these attacks since they do not change the Hamiltonian.
A countermeasure could be to embed future quantum technologies within redundant classical networks.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The highly specialist terms `quantum computing' and `quantum information', together with the broader term `quantum technologies', now appear regularly in the mainstream media. While this is undoubtedly highly exciting for physicists and investors alike, a key question for society concerns such systems' vulnerabilities -- and in particular, their vulnerability to collective manipulation. Here we present and discuss a new form of vulnerability in such systems, that we have identified based on detailed many-body quantum mechanical calculations. The impact of this new vulnerability is that groups of adversaries can maximally disrupt these systems' global quantum state which will then jeopardize their quantum functionality. It will be almost impossible to detect these attacks since they do not change the Hamiltonian and the purity remains the same; they do not entail any real-time communication between the attackers; and they can last less than a second. We also argue that there can be an implicit amplification of such attacks because of the statistical character of modern non-state actor groups. A countermeasure could be to embed future quantum technologies within redundant classical networks. We purposely structure the discussion in this chapter so that the first sections are self-contained and can be read by non-specialists.
Related papers
- Unveiling Hidden Vulnerabilities in Quantum Systems by Expanding Attack Vectors through Heisenberg's Uncertainty Principle [0.0]
This study uncovers novel vulnerabilities within Quantum Key Distribution (QKD) protocols.
The newly identified vulnerabilities arise from the complex interaction between Bell Inequalities (BIs) and Hidden Variable Theories (HVTs)
arXiv Detail & Related papers (2024-09-27T06:18:36Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Deploying hybrid quantum-secured infrastructure for applications: When
quantum and post-quantum can work together [0.8702432681310401]
Quantum key distribution is secure against unforeseen technological developments.
Post-quantum cryptography is believed to be secure even against attacks with both classical and quantum computing technologies.
Various directions in the further development of the full-stack quantum-secured infrastructure are also indicated.
arXiv Detail & Related papers (2023-04-10T13:44:21Z) - Quantum computing with and for many-body physics [0.0]
Quantum many-body systems are used to build quantum processors.
Current and future quantum processors can be used to describe large many-body systems of fermions such as electrons and nucleons.
arXiv Detail & Related papers (2023-03-08T19:34:55Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Experimental quantum adversarial learning with programmable
superconducting qubits [15.24718195264974]
We show the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits.
Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios.
arXiv Detail & Related papers (2022-04-04T18:00:00Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Attacking the Quantum Internet [0.7829352305480285]
We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers.
We point out attack vectors, then analyze attacks in terms of confidentiality, integrity and availability.
arXiv Detail & Related papers (2020-05-10T09:40:52Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.