論文の概要: A Geometric Modeling of Occam's Razor in Deep Learning
- arxiv url: http://arxiv.org/abs/1905.11027v7
- Date: Thu, 31 Oct 2024 23:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:31.569766
- Title: A Geometric Modeling of Occam's Razor in Deep Learning
- Title(参考訳): 深層学習におけるオッカムラザーの幾何学的モデリング
- Authors: Ke Sun, Frank Nielsen,
- Abstract要約: ディープニューラルネットワーク(DNN)は、非常に高次元のパラメータ空間の恩恵を受ける。
彼らの巨大なパラメータの複雑さと実践上の素晴らしいパフォーマンスは、より興味深く、説明できないものです。
本稿では,この現象を研究するための幾何学的フレーバー付き情報理論手法を提案する。
- 参考スコア(独自算出の注目度): 8.007631014276896
- License:
- Abstract: Why do deep neural networks (DNNs) benefit from very high dimensional parameter spaces? Their huge parameter complexities vs. stunning performances in practice is all the more intriguing and not explainable using the standard theory of model selection for regular models. In this work, we propose a geometrically flavored information-theoretic approach to study this phenomenon. Namely, we introduce the locally varying dimensionality of the parameter space of neural network models by considering the number of significant dimensions of the Fisher information matrix, and model the parameter space as a manifold using the framework of singular semi-Riemannian geometry. We derive model complexity measures which yield short description lengths for deep neural network models based on their singularity analysis thus explaining the good performance of DNNs despite their large number of parameters.
- Abstract(参考訳): なぜディープニューラルネットワーク(DNN)は高次元パラメータ空間の恩恵を受けるのか?
それらの大きなパラメータの複雑さと実際のパフォーマンスは、より興味深いものであり、正規モデルに対するモデル選択の標準理論では説明できない。
本研究では,この現象を研究するための幾何学的フレーバー付き情報理論手法を提案する。
すなわち、フィッシャー情報行列の有意な次元の数を考慮し、ニューラルネットワークモデルのパラメータ空間の局所的変動次元を導入し、特異半リーマン幾何学の枠組みを用いてパラメータ空間を多様体としてモデル化する。
我々は,DNNのパラメータの多さにもかかわらず,その特異性解析に基づいて,深部ニューラルネットワークモデルの短い記述長を求めるモデル複雑性尺度を導出する。
関連論文リスト
- Gaussian Process Neural Additive Models [3.7969209746164325]
ランダムフーリエ特徴を用いたガウス過程の単一層ニューラルネットワーク構築を用いたニューラル付加モデル(NAM)の新たなサブクラスを提案する。
GP-NAMは凸目的関数と、特徴次元と線形に成長する訓練可能なパラメータの数が有利である。
GP-NAMは,パラメータ数を大幅に削減して,分類タスクと回帰タスクの両方において,同等あるいはより優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T20:29:34Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Designing Universal Causal Deep Learning Models: The Case of
Infinite-Dimensional Dynamical Systems from Stochastic Analysis [3.5450828190071655]
因果作用素(COs)は、現代の分析において中心的な役割を果たす。
COを近似できるディープラーニング(DL)モデルを設計するための標準的なフレームワークはまだ存在しない。
本稿では、DLモデル設計フレームワークを導入することにより、このオープンな問題に対する「幾何学的認識」ソリューションを提案する。
論文 参考訳(メタデータ) (2022-10-24T14:43:03Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning [52.624194343095304]
我々は、内在次元のレンズを通して微調整を分析することは、経験的および理論的直観をもたらすと論じる。
実験により、一般的な事前学習モデルは本質的な次元が極めて低いことを示す。
論文 参考訳(メタデータ) (2020-12-22T07:42:30Z) - Rethinking Parameter Counting in Deep Models: Effective Dimensionality
Revisited [36.712632126776285]
ニューラルネットワークは、パラメータカウントを複雑性のプロキシとして用いる際に、謎の一般化特性を持つことを示す。
これらの特性の多くは、データによって決定されるパラメータ空間の次元を測定する実効次元のレンズを通して見る際に理解可能であることを示す。
論文 参考訳(メタデータ) (2020-03-04T15:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。