論文の概要: Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology
- arxiv url: http://arxiv.org/abs/2204.04516v1
- Date: Sat, 9 Apr 2022 17:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 18:05:14.328107
- Title: Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology
- Title(参考訳): デジタル病理学における信頼度予測を可能にする不確かさインフォームドディープラーニングモデル
- Authors: James M Dolezal, Andrew Srisuwananukorn, Dmitry Karpeyev, Siddhi
Ramesh, Sara Kochanny, Brittany Cody, Aaron Mansfield, Sagar Rakshit, Radhika
Bansa, Melanie Bois, Aaron O Bungum, Jefree J Schulte, Everett E Vokes,
Marina Chiara Garassino, Aliya N Husain, Alexander T Pearson
- Abstract要約: 肺腺癌と扁平上皮癌を鑑別するモデルを訓練し,高い信頼度予測がUQなしで予測を上回ることを示す。
非肺癌コホートに対する腺癌と扁平上皮癌との高信頼度予測を精度良く行うことで, 領域シフトの設定においてUQ閾値の信頼性が保たれることを示す。
- 参考スコア(独自算出の注目度): 40.96261204117952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A model's ability to express its own predictive uncertainty is an essential
attribute for maintaining clinical user confidence as computational biomarkers
are deployed into real-world medical settings. In the domain of cancer digital
histopathology, we describe a novel, clinically-oriented approach to
uncertainty quantification (UQ) for whole-slide images, estimating uncertainty
using dropout and calculating thresholds on training data to establish cutoffs
for low- and high-confidence predictions. We train models to identify lung
adenocarcinoma vs. squamous cell carcinoma and show that high-confidence
predictions outperform predictions without UQ, in both cross-validation and
testing on two large external datasets spanning multiple institutions. Our
testing strategy closely approximates real-world application, with predictions
generated on unsupervised, unannotated slides using predetermined thresholds.
Furthermore, we show that UQ thresholding remains reliable in the setting of
domain shift, with accurate high-confidence predictions of adenocarcinoma vs.
squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
- Abstract(参考訳): モデルが独自の予測の不確実性を表現する能力は、計算バイオマーカーが現実世界の医療環境に配備されるため、臨床ユーザーの信頼を維持する上で不可欠な属性である。
がんデジタル組織病理学の領域では,全スライド画像に対する不確実性定量化(uq)に対する新しい臨床指向アプローチ,ドロップアウトを用いた不確実性の推定,トレーニングデータにおける閾値の算出,低信頼・高信頼予測のためのカットオフの確立について述べる。
肺腺癌と扁平上皮癌を鑑別するモデルを訓練し、複数の施設にまたがる2つの大きな外部データセットのクロスバリデーションと試験において、高い信頼度予測がUQなしで予測を上回ることを示す。
テスト戦略は,教師なし,無注釈のスライド上で所定のしきい値を用いて予測を行い,実世界のアプリケーションと密接に近似する。
さらに, uq閾値は領域シフトの設定に信頼性があり, 非lung癌コホートに対する腺癌と扁平上皮癌の高信頼度予測も高い値を示した。
関連論文リスト
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Uncertainty estimations methods for a deep learning model to aid in
clinical decision-making -- a clinician's perspective [0.0]
深層学習にインスパイアされた不確実性推定技術はいくつかあるが、医療データセットに実装されているものはほとんどない。
我々は,不確かさを推定するために,ドロップアウト変動推論(DO),テスト時間拡張(TTA),共形予測,単一決定論的手法を比較した。
臨床実習にモデルを組み込む前に,複数の推定手法を評価することが重要である。
論文 参考訳(メタデータ) (2022-10-02T17:54:54Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Leveraging Uncertainty in Deep Learning for Pancreatic Adenocarcinoma
Grading [0.0]
膵癌は、他のがんと比較して最悪の予後の1つである。
膵腺癌を診断するための現在の手関節組織学的評価は時間を要するため,誤診が頻発することが多い。
デジタル病理学では、AIに基づくがんのグレーディングは予測と不確実性定量化において極めて正確でなければならない。
論文 参考訳(メタデータ) (2022-06-15T19:53:06Z) - Confidence Aware Neural Networks for Skin Cancer Detection [12.300911283520719]
画像からの皮膚癌検出における不確かさを定量化する3つの方法を提案する。
その結果, 予測不確実性推定手法は, リスクや誤予測を予測できることがわかった。
また、アンサンブルアプローチは推論によって不確実性を捉える上でより信頼性が高いことを示す。
論文 参考訳(メタデータ) (2021-07-19T19:21:57Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
集中治療室(Intensive Care Unit、ICU)は、機械学習が臨床的意思決定に有用な支援を提供する可能性がある病院部門である。
実際には、破滅的な治療決定を未然に防ぐために、余計な治療を受けた医師に不確実な予測を提示すべきである。
ベイジアンモデリングとそれが提供する予測の不確実性が、誤った予測のリスクを軽減するためにどのように使用できるかを示す。
論文 参考訳(メタデータ) (2019-06-20T13:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。