論文の概要: Estimating Treatment Effect under Additive Hazards Models with High-dimensional Covariates
- arxiv url: http://arxiv.org/abs/1907.00287v2
- Date: Mon, 02 Dec 2024 19:40:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 20:54:01.090727
- Title: Estimating Treatment Effect under Additive Hazards Models with High-dimensional Covariates
- Title(参考訳): 高次元共変量付加ハザードモデルによる処理効果の推定
- Authors: Jue Hou, Jelena Bradic, Ronghui Xu,
- Abstract要約: 本稿では,治療効果推定と推定のための新しいスコア法を提案する。
本研究では,高次元付加的ハザードモデルに基づく条件付き治療効果の有効な推定法を提案する。
前立腺癌に対する根治的前立腺切除術の治療効果について検討した。
- 参考スコア(独自算出の注目度): 0.3481985817302898
- License:
- Abstract: Estimating causal effects for survival outcomes in the high-dimensional setting is an extremely important topic for many biomedical applications as well as areas of social sciences. We propose a new orthogonal score method for treatment effect estimation and inference that results in asymptotically valid confidence intervals assuming only good estimation properties of the hazard outcome model and the conditional probability of treatment. This guarantee allows us to provide valid inference for the conditional treatment effect under the high-dimensional additive hazards model under considerably more generality than existing approaches. In addition, we develop a new Hazards Difference (HDi), estimator. We showcase that our approach has double-robustness properties in high dimensions: with cross-fitting, the HDi estimate is consistent under a wide variety of treatment assignment models; the HDi estimate is also consistent when the hazards model is misspecified and instead the true data generating mechanism follows a partially linear additive hazards model. We further develop a novel sparsity doubly robust result, where either the outcome or the treatment model can be a fully dense high-dimensional model. We apply our methods to study the treatment effect of radical prostatectomy versus conservative management for prostate cancer patients using the SEER-Medicare Linked Data.
- Abstract(参考訳): 高次元環境下での生存効果の因果効果の推定は、多くのバイオメディカル応用や社会科学分野において非常に重要なトピックである。
本稿では, 治療効果推定と評価のための新しい直交スコア法を提案し, リスク結果モデルの良好な推定特性と治療条件の確率を仮定して, 漸近的に有効な信頼区間を導出する。
この保証により,高次元付加的ハザードモデルに基づく条件付き処理効果を,既存の手法よりもはるかに一般化した形で有効に推測することができる。
さらに,新しいハザーズ差分 (HDi) , 推定器を開発した。
クロスフィッティングでは,HDi推定は多種多様な処理代入モデルの下で一貫したものであり,HDi推定はハザードモデルが誤って特定され,真のデータ生成機構が部分的に線形な付加的ハザードモデルに従う場合にも一貫したものである。
さらに, 結果モデルと治療モデルが完全に密度の高い高次元モデルとなるような, 二重頑健な新しいスパース性モデルを開発した。
SEER-Medicare Linked Data を用いた前立腺癌に対する根治的前立腺切除術の治療効果について検討した。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
因果効果推定は、平均処理効果と、治療の条件平均処理効果を、利用可能なデータから得られる結果に推定することを目的としている。
本稿では,C-XGBoost という新たな因果推論モデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T17:43:37Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep
Adversarial Learning for Counterfactual Prediction and Treatment Effect
Estimation on Real World Data [7.712429926730386]
因果深い学習は、個別化された治療効果を推定する伝統的な手法よりも改善された。
DR-VIDALは治療と結果の2つのジョイントモデルを組み合わせた新しい生成フレームワークである。
DR-VIDALは、合成および実世界のデータセットにおいて、他の生成的および生成的手法よりも優れた性能を達成する。
論文 参考訳(メタデータ) (2023-03-07T19:44:58Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
本研究では,観測データにおける不整合問題に対処するため,モデルに基づく森林の修正を提案する。
この戦略は,様々な結果分布を模擬した実験において,コンバウンディング効果を低減させることがわかった。
筋萎縮性側索硬化症の進行に対するリルゾールの潜在的ヘテロジニアス効果を評価することにより,HTEの生存率と経時的成績を推定する実践的側面を示す。
論文 参考訳(メタデータ) (2022-10-06T11:49:39Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Efficient Learning of Optimal Individualized Treatment Rules for
Heteroscedastic or Misspecified Treatment-Free Effect Models [3.7311680121118345]
マルチアーム処理環境において最適な個別化処理規則(ITR)を求めるための効率的な学習フレームワークを提案する。
提案したE-Learningは,非治療効果の誤特定を許容する半パラメトリック推定の正規クラスの中で最適であることを示す。
論文 参考訳(メタデータ) (2021-09-06T16:11:42Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
本研究の目的は,この手法を標準化されたスケーラブルなフレームワークを用いて観測環境に拡張することであった。
アンジオテンシン変換酵素阻害薬(ACE)とβ阻害薬の3つの効果と6つの安全性に対する効果を評価することにより,我々の枠組みを実証する。
論文 参考訳(メタデータ) (2020-10-13T14:48:31Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
観測データにおける不均一な処理効果を推定する方法は, 連続的あるいは二分的な結果に大きく焦点を絞っている。
対物的フレームワークで柔軟な機械学習手法を使用することは、複雑な個人特性による課題に対処するための有望なアプローチである。
論文 参考訳(メタデータ) (2020-08-17T01:02:14Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。