Estimating Treatment Effect under Additive Hazards Models with High-dimensional Covariates
- URL: http://arxiv.org/abs/1907.00287v2
- Date: Mon, 02 Dec 2024 19:40:22 GMT
- Title: Estimating Treatment Effect under Additive Hazards Models with High-dimensional Covariates
- Authors: Jue Hou, Jelena Bradic, Ronghui Xu,
- Abstract summary: We propose a new score method for treatment effect estimation and inference.
We provide valid inference for the conditional treatment effect under the high-dimensional additive hazards model.
We apply our methods to study the treatment effect of radical prostatectomy versus conservative management for prostate cancer patients.
- Score: 0.3481985817302898
- License:
- Abstract: Estimating causal effects for survival outcomes in the high-dimensional setting is an extremely important topic for many biomedical applications as well as areas of social sciences. We propose a new orthogonal score method for treatment effect estimation and inference that results in asymptotically valid confidence intervals assuming only good estimation properties of the hazard outcome model and the conditional probability of treatment. This guarantee allows us to provide valid inference for the conditional treatment effect under the high-dimensional additive hazards model under considerably more generality than existing approaches. In addition, we develop a new Hazards Difference (HDi), estimator. We showcase that our approach has double-robustness properties in high dimensions: with cross-fitting, the HDi estimate is consistent under a wide variety of treatment assignment models; the HDi estimate is also consistent when the hazards model is misspecified and instead the true data generating mechanism follows a partially linear additive hazards model. We further develop a novel sparsity doubly robust result, where either the outcome or the treatment model can be a fully dense high-dimensional model. We apply our methods to study the treatment effect of radical prostatectomy versus conservative management for prostate cancer patients using the SEER-Medicare Linked Data.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep
Adversarial Learning for Counterfactual Prediction and Treatment Effect
Estimation on Real World Data [7.712429926730386]
Causal deep learning has improved over traditional techniques for estimating individualized treatment effects.
We present DR-VIDAL, a novel generative framework that combines two joint models of treatment and outcome.
DR-VIDAL achieves better performance than other non-generative and generative methods on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-03-07T19:44:58Z) - Heterogeneous Treatment Effect Estimation for Observational Data using
Model-based Forests [0.0]
We propose modifications to model-based forests to address the confounding issue in observational data.
We found that this strategy reduces confounding effects in a simulated study with various outcome distributions.
We demonstrate the practical aspects of HTE estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
arXiv Detail & Related papers (2022-10-06T11:49:39Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Efficient Learning of Optimal Individualized Treatment Rules for
Heteroscedastic or Misspecified Treatment-Free Effect Models [3.7311680121118345]
We propose an Efficient Learning framework for finding an optimal individualized treatment rule (ITR) in the multi-armed treatment setting.
We show that the proposed E-Learning is optimal among a regular class of semiparametric estimates that can allow treatment-free effect misspecification.
arXiv Detail & Related papers (2021-09-06T16:11:42Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes.
Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics.
arXiv Detail & Related papers (2020-08-17T01:02:14Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.