論文の概要: Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders
- arxiv url: http://arxiv.org/abs/1912.01181v2
- Date: Thu, 26 Sep 2024 01:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:57:56.184295
- Title: Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders
- Title(参考訳): 神経障害における脳ネットワーク障害発見のための多分解能グラフエッジ埋め込みの学習
- Authors: Xin Ma, Guorong Wu, Seong Jae Hwang, Won Hwa Kim,
- Abstract要約: 病気特異的なコネクトロミックベンチマークを検出するためのマルチレゾリューションエッジネットワーク(MENET)を提案する。
MENETは診断ラベルを正確に予測し、神経疾患と関連性の高い脳の結合性を識別する。
- 参考スコア(独自算出の注目度): 10.12649945620901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tremendous recent literature show that associations between different brain regions, i.e., brain connectivity, provide early symptoms of neurological disorders. Despite significant efforts made for graph neural network (GNN) techniques, their focus on graph nodes makes the state-of-the-art GNN methods not suitable for classifying brain connectivity as graphs where the objective is to characterize disease-relevant network dysfunction patterns on graph links. To address this issue, we propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks with high discrimination power across diagnostic categories. The core of MENET is a novel graph edge-wise transform that we propose, which allows us to capture multi-resolution ``connectomic'' features. Using a rich set of the connectomic features, we devise a graph learning framework to jointly select discriminative edges and assign diagnostic labels for graphs. Experiments on two real datasets show that MENET accurately predicts diagnostic labels and identify brain connectivities highly associated with neurological disorders such as Alzheimer's Disease and Attention-Deficit/Hyperactivity Disorder.
- Abstract(参考訳): 最近の異種の文献では、異なる脳領域、すなわち脳の接続が神経疾患の早期症状をもたらすことが示されている。
グラフニューラルネットワーク(GNN)技術に対する大きな取り組みにも関わらず、グラフノードに重点を置いているため、現在の最先端のGNNメソッドは、グラフリンク上の疾患関連ネットワーク障害パターンを特徴付けることを目的としたグラフとして、脳接続を分類するのに適さない。
この問題に対処するために,診断カテゴリ間で高い判別能力を有する病原性結合性ベンチマークを検出するためのマルチレゾリューションエッジネットワーク(MENET)を提案する。
MENETの中核は、我々が提案する新しいグラフエッジワイド変換であり、マルチ解像度 ``connectomic'' 機能をキャプチャすることができる。
連結特徴の豊富な集合を用いて、識別エッジを共同で選択し、グラフの診断ラベルを割り当てるグラフ学習フレームワークを考案する。
2つの実際のデータセットでの実験により、MENETは診断ラベルを正確に予測し、アルツハイマー病や注意・抑止・多動性障害などの神経疾患と密接に関連している脳の結合性を特定する。
関連論文リスト
- Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification [15.24676785238373]
本稿では,新しいコントラスト型脳ネットワークトランスであるContrasformerを提案する。
サブポピュレーション間の分布シフトに対処するために、事前知識付きコントラストグラフを生成する。
コントラストフォーマーは、最大10.8%の精度向上によって、脳ネットワークの最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-09-17T07:26:02Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Multi-modal Dynamic Graph Network: Coupling Structural and Functional
Connectome for Disease Diagnosis and Classification [8.67028273829113]
構造的および機能的脳ネットワーク学習のためのマルチモーダル動的グラフ畳み込みネットワーク(MDGCN)を提案する。
本手法は,モーダル間表現のモデル化と動的グラフへの注意的多モデル関連付けの利点を生かした。
論文 参考訳(メタデータ) (2022-10-25T02:41:32Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
グラフニューラルネットワーク(GNN)は,グラフ構造化データを解析するためのデファクトモデルとなっている。
我々はマルチモーダル脳ネットワークのための新しいマルチビューGNNを開発した。
特に、各モダリティを脳ネットワークの視点とみなし、マルチモーダル融合のためのコントラスト学習を採用する。
論文 参考訳(メタデータ) (2021-07-07T13:49:57Z) - Brain Multigraph Prediction using Topology-Aware Adversarial Graph
Neural Network [1.6114012813668934]
topoGANアーキテクチャを導入し、単一の脳グラフから複数の脳グラフを共同で予測する。
i) 1つのグラフから複数の脳グラフを予測する新しいグラフ対向オートエンコーダを設計すること、(ii)GANのモード崩壊問題に対処するために符号化されたソースグラフをクラスタリングすること、(iii)トポロジ的損失を導入して、トポロジ的ターゲット脳グラフの予測を強要することである。
論文 参考訳(メタデータ) (2021-05-06T10:20:45Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。