Evidence for Bosonization in a three-dimensional gas of SU($N$) fermions
- URL: http://arxiv.org/abs/1912.12105v3
- Date: Thu, 17 Dec 2020 09:10:14 GMT
- Title: Evidence for Bosonization in a three-dimensional gas of SU($N$) fermions
- Authors: Bo Song, Yangqian Yan, Chengdong He, Zejian Ren, Qi Zhou and Gyu-Boong
Jo
- Abstract summary: We report direct evidence for bosonization in a SU($N$) fermionic ytterbium gas with tunable $N$ in three dimensions (3D)
We find that the contact per spin approaches a constant with a 1/$N$ scaling in the low fugacity regime consistent with our theoretical prediction.
Our work delivers a highly controllable quantum simulator to exchange the bosonic and fermionic statistics through tuning the internal degrees of freedom in any generic dimensions.
- Score: 5.5318102301220815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blurring the boundary between bosons and fermions lies at the heart of a wide
range of intriguing quantum phenomena in multiple disciplines, ranging from
condensed matter physics and atomic, molecular and optical physics to high
energy physics. One such example is a multi-component Fermi gas with SU($N$)
symmetry that is expected to behave like spinless bosons in the large $N$
limit, where the large number of internal states weakens constraints from the
Pauli exclusion principle. However, bosonization in SU($N$) fermions has never
been established in high dimensions where exact solutions are absent. Here, we
report direct evidence for bosonization in a SU($N$) fermionic ytterbium gas
with tunable $N$ in three dimensions (3D). We measure contacts, the central
quantity controlling dilute quantum gases, from the momentum distribution, and
find that the contact per spin approaches a constant with a 1/$N$ scaling in
the low fugacity regime consistent with our theoretical prediction. This
scaling signifies the vanishing role of the fermionic statistics in
thermodynamics, and allows us to verify bosonization through measuring a single
physical quantity. Our work delivers a highly controllable quantum simulator to
exchange the bosonic and fermionic statistics through tuning the internal
degrees of freedom in any generic dimensions. It also suggests a new route
towards exploring multi-component quantum systems and their underlying
symmetries with contacts.
Related papers
- Spontaneous symmetry breaking in a $SO(3)$ non-Abelian lattice gauge theory in $2+1$D with quantum algorithms [0.0]
We study the ability of quantum algorithms to prepare ground states in a matter-free non-Abelian $SO(3)$ lattice gauge theory in $2+1$D.
To deal with the large Hilbert space of gauge fields, we demonstrate how the exact imposition of the non-Abelian Gauss Law in the rishon representation of the quantum link operator significantly reduces the degrees of freedom.
arXiv Detail & Related papers (2024-09-11T08:55:59Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Entanglement Rényi Negativity of Interacting Fermions from Quantum Monte Carlo Simulations [0.4209374775815558]
We study mixed-state quantum entanglement using negativity in interacting fermionic systems.
We calculate the rank-two R'enyi negativity for the half-filled Hubbard model and the spinless $t$-$V$ model.
Our work contributes to the calculation of entanglement and sets the stage for future studies on quantum entanglement in various fermionic many-body mixed states.
arXiv Detail & Related papers (2023-12-21T18:59:46Z) - Observation of a finite-energy phase transition in a one-dimensional
quantum simulator [39.899531336700136]
We show the first experimental demonstration of a finite-energy phase transition in 1D.
By preparing initial states with different energies in a 1D trapped-ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system.
arXiv Detail & Related papers (2023-10-30T18:00:01Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Area-law entanglement from quantum geometry [0.0]
We study the entanglement entropy of a region of linear size $ell$ in fermion systems with nontrivial quantum geometry.
We show that the entanglement entropy scales as $S = alpha elld-1 lnell + beta elld-1 + cdots$ where the first term is the well-known area-law violating term for fermions.
arXiv Detail & Related papers (2022-10-24T18:00:59Z) - Many Body Density of States of a system of non interacting spinless
fermions [0.0]
We introduce a new approach to evaluate the many-body density of states (MBDoS) in the case of systems that can be mapped into free fermions.
We show that the many body spectrum can be expanded as a weighted sum of spectra given by the principal components of the filling matrix.
We illustrate our method in two classes of problems that are mapped into spinless fermions.
arXiv Detail & Related papers (2022-07-30T20:47:50Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
Noncommuting charges have emerged as a subfield at the intersection of quantum thermodynamics and quantum information.
We simulate a Heisenberg evolution using laser-induced entangling interactions and collective spin rotations.
We find that small subsystems equilibrate to near a recently predicted non-Abelian thermal state.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.