Entanglement Rényi Negativity of Interacting Fermions from Quantum Monte Carlo Simulations
- URL: http://arxiv.org/abs/2312.14155v3
- Date: Sat, 15 Jun 2024 05:07:09 GMT
- Title: Entanglement Rényi Negativity of Interacting Fermions from Quantum Monte Carlo Simulations
- Authors: Fo-Hong Wang, Xiao Yan Xu,
- Abstract summary: We study mixed-state quantum entanglement using negativity in interacting fermionic systems.
We calculate the rank-two R'enyi negativity for the half-filled Hubbard model and the spinless $t$-$V$ model.
Our work contributes to the calculation of entanglement and sets the stage for future studies on quantum entanglement in various fermionic many-body mixed states.
- Score: 0.4209374775815558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many-body entanglement unveils additional aspects of quantum matter and offers insights into strongly correlated physics. While ground-state entanglement has received much attention in the past decade, the study of mixed-state quantum entanglement using negativity in interacting fermionic systems remains largely unexplored. We demonstrate that the partially transposed density matrix of interacting fermions, similar to their reduced density matrix, can be expressed as a weighted sum of Gaussian states describing free fermions, enabling the calculation of rank-$n$ R\'{e}nyi negativity within the determinant quantum Monte Carlo framework. We conduct the first calculation of the rank-two R\'{e}nyi negativity for the half-filled Hubbard model and the spinless $t$-$V$ model. Our calculation reveals that the area law coefficient of the R\'{e}nyi negativity for the spinless $t$-$V$ model has a logarithmic finite-size scaling at the finite-temperature transition point. Our work contributes to the calculation of entanglement and sets the stage for future studies on quantum entanglement in various fermionic many-body mixed states.
Related papers
- High-efficiency quantum Monte Carlo algorithm for extracting entanglement entropy in interacting fermion systems [4.758738320755899]
We propose a fermionic quantum Monte Carlo algorithm based on the incremental technique along physical parameters.
We show the effectiveness of the algorithm and show the high precision.
In this simulation, the calculated scaling behavior of the entanglement entropy elucidates the different phases of the Fermi surface and Goldstone modes.
arXiv Detail & Related papers (2024-09-30T07:07:51Z) - Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Polaritonic Ultrastrong Coupling: Quantum Entanglement in Ground State [0.0]
We study the ultrastrong coupling between the elementary excitations of matter and microcavity modes.
The amount of quantum entanglement in the ground state is quite significant in the ultrastrong coupling regime.
arXiv Detail & Related papers (2023-04-03T01:58:23Z) - Symmetry Resolved Entanglement of Excited States in Quantum Field Theory
III: Bosonic and Fermionic Negativity [0.0]
We study the resolved R'enyi entropies of quasi-particle excited states in quantum field theory.
We compute the ratio of charged moments of the partially transposed reduced density matrix as an expectation value of twist operators.
We find that although the operation of partial transposition requires a redefinition for fermionic theories, the ratio of the negativity moments between an excited state and the ground state is universal and identical for fermions and bosons.
arXiv Detail & Related papers (2023-02-06T10:05:58Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - The modified logarithmic Sobolev inequality for quantum spin systems:
classical and commuting nearest neighbour interactions [2.148535041822524]
We prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing.
We show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium.
Our results have wide-ranging applications in quantum information.
arXiv Detail & Related papers (2020-09-24T16:54:06Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.