The effect of nonequilibrium entropy production on the quantum Fisher
information and correlations
- URL: http://arxiv.org/abs/1912.12734v2
- Date: Sun, 13 Jun 2021 16:05:30 GMT
- Title: The effect of nonequilibrium entropy production on the quantum Fisher
information and correlations
- Authors: Xuanhua Wang and Jin Wang
- Abstract summary: We find that the nonequilibrium conditions enhance quantum Fisher information (QFI) and quantum correlations predominantly for weak tunneling scenarios.
For the strong tunneling regimes, the QFI and quantum correlations can not be unceasingly boosted by higher thermodynamic costs and decay once the system is overburdened with extremely large energy currents.
- Score: 3.658164271285286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we apply quantum master equations beyond secular
approximation, and investigate the nonequilibrium thermodynamic cost of
enhanced quantum metrology and quantum correlations. We find that the
nonequilibrium conditions enhance quantum Fisher information (QFI) and quantum
correlations predominantly for weak tunneling scenarios. The enhancement is
assisted by a corresponding increase of the thermodynamic cost characterized by
the entropy production rate (EPR). For the strong tunneling regimes, the QFI
and quantum correlations can not be unceasingly boosted by higher thermodynamic
costs and decay once the system is overburdened with extremely large energy
currents. The result indicates that for open systems with weak tunneling rates,
thermodynamic cost can be potentially exploited to improve the quantum
metrology and quantum correlations.
Related papers
- Information geometry approach to quantum stochastic thermodynamics [0.0]
Recent advancements have revealed new links between information geometry and classical thermodynamics.
We exploit the fact that any quantum Fisher information (QFI) can be decomposed into a metric-independent incoherent part and a metric-dependent coherent contribution.
arXiv Detail & Related papers (2024-09-09T21:34:54Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - On the role of initial coherence in the spin phase-space entropy
production rate [0.0]
We show that, when considering entropy production generated in a process taking a finite-size bipartite quantum system out of equilibrium through local non-unitary channels, no general monotonicity relationship exists between the entropy production and degree of quantum coherence in the state of the system.
Our results call for a systematic study of the role of genuine quantum features in the non-equilibrium thermodynamics of quantum processes.
arXiv Detail & Related papers (2022-07-12T15:48:12Z) - Thermodynamic uncertainty relations for coherently driven open quantum
systems [0.0]
We analyze the uncertainty of steady-state currents in Markovian open quantum systems.
We find that the thermodynamic cost of reducing fluctuations can be lowered below the classical bound by coherence.
arXiv Detail & Related papers (2021-04-26T16:53:52Z) - Universal Quantum Fluctuation-Dissipation Relation for Systems Far From
Equilibrium [3.0965505512285967]
We present a general nonequilibrium Fluctuation-Dissipation Theorem (FDT) for quantum Markovian processes where the detailed-balance condition is violated.
Apart from the fluctuations, the relaxation involves extra correlation that is governed by the quantum curl flux emerged in the far-from-equilibrium regime.
Our results have the advantage of and exceed the scope of the fluctuation-dissipation relation in the perturbative and near equilibrium regimes.
arXiv Detail & Related papers (2021-01-28T06:12:08Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.