論文の概要: Towards Regulated Deep Learning
- arxiv url: http://arxiv.org/abs/1912.13122v7
- Date: Thu, 27 Jul 2023 12:22:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 21:07:27.021040
- Title: Towards Regulated Deep Learning
- Title(参考訳): 深層学習の規制に向けて
- Authors: Andr\'es Garc\'ia-Camino
- Abstract要約: 本研究の目的は, 人工学習(AT)に注意を向けることであり, 規則的深層学習(RDL)の概念実証実装を示す仮の回答を与えることである。
本稿では,前者の概念を紹介し,以前宣言的にモデル化し,電子研究所を拡張するために用いられていた言語である$I*$を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regulation of Multi-Agent Systems (MAS) and Declarative Electronic
Institutions (DEIs) was a multidisciplinary research topic of the past decade
involving (Physical and Software) Agents and Law since the beginning, but
recently evolved towards News-claimed Robot Lawyer since 2016. One of these
first proposals of restricting the behaviour of Software Agents was Electronic
Institutions.However, with the recent reformulation of Artificial Neural
Networks (ANNs) as Deep Learning (DL), Security, Privacy,Ethical and Legal
issues regarding the use of DL has raised concerns in the Artificial
Intelligence (AI) Community. Now that the Regulation of MAS is almost correctly
addressed, we propose the Regulation of Artificial Neural Networks as
Agent-based Training of a special type of regulated Artificial Neural Network
that we call Institutional Neural Network (INN).The main purpose of this paper
is to bring attention to Artificial Teaching (AT) and to give a tentative
answer showing a proof-of-concept implementation of Regulated Deep Learning
(RDL). This paper introduces the former concept and provide $I^*$, a language
previously used to model declaratively and extend Electronic Institutions, as a
means to regulate the execution of Artificial Neural Networks and their
interactions with Artificial Teachers (ATs)
- Abstract(参考訳): マルチエージェントシステム(mas)と宣言型電子機関(deis)の規制は、(物理的およびソフトウェア)エージェントと法に関する過去10年間の多分野にわたる研究テーマであったが、最近は2016年以来、ニュースを流用するロボット弁護士へと進化した。
ソフトウェアエージェントの行動を制限する最初の提案の1つは電子機関であったが、近年のディープラーニング(dl)としての人工ニューラルネットワーク(anns)の改革により、dlの使用に関するセキュリティ、プライバシ、倫理、法的な問題により、人工知能(ai)コミュニティの懸念が高まっている。
現在、MASの規制はほぼ正しく対処されているため、我々はInstitutional Neural Network (INN)と呼ぶ特殊なタイプの制御ニューラルネットワークのエージェントベーストレーニングとして、ニューラルネットワークの規制を提案する。
本研究の目的は,人工学習(AT)に注意を向けることであり,Regulated Deep Learning(RDL)の概念実証実装を示す仮の回答を与えることである。
本稿では,前者の概念を紹介し,これまで宣言的にモデル化し,電子施設を拡張するために用いられてきた言語である$I^*$について,人工ニューラルネットワークの実行と人工教師との相互作用を規制する手段として紹介する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Software Engineering Methods For AI-Driven Deductive Legal Reasoning [2.95701410483693]
ソフトウェアエンジニアリングの原則が、複雑な法令のAIによる法的推論をいかに向上させるかを示す。
自動メタ推論において,ソフトウェア工学の原則を適用して新しいアプリケーションをアンロックする方法を示す。
論文 参考訳(メタデータ) (2024-04-15T15:33:29Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Quantitative study about the estimated impact of the AI Act [0.0]
我々は2021年4月に公表されたAI法の最初の草案に適用される体系的なアプローチを提案する。
我々は、ドイツのLernende SystemeプラットフォームがリストしているAI製品とプロジェクトのリストを、いくつかのイテレーションでコンパイルしました。
その結果、AI法によって規制されると見なされるAIシステムの約30%のみが、残りは低リスクに分類されることがわかった。
論文 参考訳(メタデータ) (2023-03-29T06:23:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism,
and Application Trend of Explainable AI [71.70949497737655]
ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trends of Explainable AI。
ディープニューラルネットワーク(DNN)は、コンピュータビジョン、計算言語学、AIなど、幅広い分野で大きな成功を収めたことは間違いない。
しかし、DNNの成功と敵の攻撃に対する弾力性の根底にある基本原理は依然としてほとんど失われている。
このワークショップは、XAIの範囲における理論の基礎、制限、および新しいアプリケーショントレンドに特別な関心を払っている。
論文 参考訳(メタデータ) (2021-07-16T13:14:16Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。