論文の概要: Software Engineering Methods For AI-Driven Deductive Legal Reasoning
- arxiv url: http://arxiv.org/abs/2404.09868v2
- Date: Thu, 27 Jun 2024 21:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 21:15:15.152802
- Title: Software Engineering Methods For AI-Driven Deductive Legal Reasoning
- Title(参考訳): AI駆動推論法則推論のためのソフトウェアエンジニアリング手法
- Authors: Rohan Padhye,
- Abstract要約: ソフトウェアエンジニアリングの原則が、複雑な法令のAIによる法的推論をいかに向上させるかを示す。
自動メタ推論において,ソフトウェア工学の原則を適用して新しいアプリケーションをアンロックする方法を示す。
- 参考スコア(独自算出の注目度): 2.95701410483693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent proliferation of generative artificial intelligence (AI) technologies such as pre-trained large language models (LLMs) has opened up new frontiers in computational law. An exciting area of development is the use of AI to automate the deductive rule-based reasoning inherent in statutory and contract law. This paper argues that such automated deductive legal reasoning can now be viewed from the lens of software engineering, treating LLMs as interpreters of natural-language programs with natural-language inputs. We show how it is possible to apply principled software engineering techniques to enhance AI-driven legal reasoning of complex statutes and to unlock new applications in automated meta-reasoning such as mutation-guided example generation and metamorphic property-based testing.
- Abstract(参考訳): 近年,学習済みの大規模言語モデル (LLM) などの生成人工知能(AI)技術の普及により,計算法における新たなフロンティアが開きつつある。
発展のエキサイティングな領域は、法規や契約法に固有の帰納的規則に基づく推論を自動化するためにAIを使用することである。
本稿では,LLMを自然言語入力による自然言語プログラムのインタプリタとして扱うことにより,このような自動推論法則をソフトウェア工学のレンズから見ることができることを論じる。
我々は、AIによる複雑な法令の法的推論を強化し、突然変異誘導型サンプル生成やメタモルフィックプロパティベースのテストのような自動メタ推論における新しいアプリケーションをアンロックするために、原則化されたソフトウェアエンジニアリング技術を適用する方法を示す。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
ディープニューラルネットワーク(DNN)は、自動運転車の知覚機能の中心となっている。
EU(EU)人工知能(AI)法は、AIシステムの厳格な規範と標準を確立することによって、これらの課題に対処することを目的としている。
本稿では、DNNに基づく知覚システムに関するEU AI法から生じる要件を要約し、ADにおける既存の生成AIアプリケーションを体系的に分類する。
論文 参考訳(メタデータ) (2024-08-30T12:01:06Z) - A Path Towards Legal Autonomy: An interoperable and explainable approach to extracting, transforming, loading and computing legal information using large language models, expert systems and Bayesian networks [2.2192488799070444]
法的な自律性は、開発者やデプロイ者、ユーザといったAIアクターに制約を課すこと、あるいはAIエージェントが環境に与える影響の範囲と範囲に制約を課すことによって達成できる。
後者のアプローチでは、AI駆動デバイスに関する既存のルールを、それらのデバイスを制御するAIエージェントのソフトウェアにエンコードする。
このようなアプローチの有効性は、説明可能かつ法的に相互運用可能な法的情報を抽出、ロード、変換、計算する手法を必要とするため、これは課題である。
論文 参考訳(メタデータ) (2024-03-27T13:12:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - Bringing order into the realm of Transformer-based language models for
artificial intelligence and law [3.2074558838636262]
トランスフォーマーベース言語モデル(TLM)は最先端技術として広く認識されている。
本稿は、法的領域におけるAI駆動問題とタスクに対するTLMベースの手法に関する最初の体系的な概要を提供する。
論文 参考訳(メタデータ) (2023-08-10T11:14:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - A Critical Review of Inductive Logic Programming Techniques for
Explainable AI [9.028858411921906]
インダクティブ論理プログラミング(英: Inductive Logic Programming、ILP)は、人工知能のサブフィールドである。
ILPは、例と背景知識から説明可能な一階クラッサル理論を生成する。
既存のILPシステムは、しばしば広大な解空間を持ち、誘導された解はノイズや乱れに非常に敏感である。
論文 参考訳(メタデータ) (2021-12-31T06:34:32Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AI and Legal Argumentation: Aligning the Autonomous Levels of AI Legal
Reasoning [0.0]
法的議論は正義の重要な基盤であり、敵対的な法の形を支えている。
広範囲にわたる研究は、人工知能(AI)を含むコンピュータベースの自動化を使用して、法的議論を拡大または実施しようと試みている。
AI法則推論のLevels of Autonomy(LoA)をAIの成熟と法体系化(AILA)に適用するために、革新的なメタアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-11T22:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。