論文の概要: Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination
- arxiv url: http://arxiv.org/abs/2310.19503v2
- Date: Tue, 31 Oct 2023 09:16:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 20:20:00.242374
- Title: Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination
- Title(参考訳): 自己決定のための知識グラフに基づくAIにおける信頼・説明責任・自律性
- Authors: Luis-Daniel Ib\'a\~nez, John Domingue, Sabrina Kirrane, Oshani
Seneviratne, Aisling Third, Maria-Esther Vidal
- Abstract要約: 知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
- 参考スコア(独自算出の注目度): 1.4305544869388402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge Graphs (KGs) have emerged as fundamental platforms for powering
intelligent decision-making and a wide range of Artificial Intelligence (AI)
services across major corporations such as Google, Walmart, and AirBnb. KGs
complement Machine Learning (ML) algorithms by providing data context and
semantics, thereby enabling further inference and question-answering
capabilities. The integration of KGs with neuronal learning (e.g., Large
Language Models (LLMs)) is currently a topic of active research, commonly named
neuro-symbolic AI. Despite the numerous benefits that can be accomplished with
KG-based AI, its growing ubiquity within online services may result in the loss
of self-determination for citizens as a fundamental societal issue. The more we
rely on these technologies, which are often centralised, the less citizens will
be able to determine their own destinies. To counter this threat, AI
regulation, such as the European Union (EU) AI Act, is being proposed in
certain regions. The regulation sets what technologists need to do, leading to
questions concerning: How can the output of AI systems be trusted? What is
needed to ensure that the data fuelling and the inner workings of these
artefacts are transparent? How can AI be made accountable for its
decision-making? This paper conceptualises the foundational topics and research
pillars to support KG-based AI for self-determination. Drawing upon this
conceptual framework, challenges and opportunities for citizen
self-determination are illustrated and analysed in a real-world scenario. As a
result, we propose a research agenda aimed at accomplishing the recommended
objectives.
- Abstract(参考訳): 知識グラフ(KG)は、インテリジェントな意思決定と、Google、Walmart、AirBnbといった大企業にまたがる幅広い人工知能(AI)サービスを支える基本的なプラットフォームとして登場した。
KGはデータコンテキストとセマンティクスを提供することで機械学習(ML)アルゴリズムを補完する。
KGとニューロラーニング(例えば、Large Language Models (LLMs))の統合は、現在活発な研究のトピックであり、一般にニューロシンボリックAIと呼ばれている。
kgベースのaiで達成できる多くの利点にもかかわらず、そのオンラインサービスにおけるユビキタス化は、基本的な社会問題として市民の自己決定の喪失をもたらす可能性がある。
中央集権化されることが多いこれらの技術に頼れば頼ればするほど、市民は自分の運命を決定できるでしょう。
この脅威に対抗するため、欧州連合(EU)のAI法のようなAI規制が一部の地域で提案されている。
この規制は、技術者がすべきことを規定している。AIシステムのアウトプットは、どのように信頼されるのか?
これらのアーティファクトの内部構造が透明であることを保証するためには、何が必要か?
AIはどのようにして意思決定に責任を負うことができるのか?
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
この概念的な枠組みに基づいて、市民の自己決定の挑戦と機会が実世界のシナリオで示され、分析される。
その結果,提案する目標を達成するための研究課題を提案する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - How VADER is your AI? Towards a definition of artificial intelligence
systems appropriate for regulation [41.94295877935867]
最近のAI規制提案では、ICT技術、アプローチ、AIではないシステムに影響を与えるAI定義が採用されている。
本稿では,AI定義の規制(VADER)が適切に定義されているかを評価するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-07T17:41:15Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
AIにおけるアルゴリズム上の格差、公平性、説明責任、透明性、倫理(FATE)が実装されている。
本研究では、AIによって守られている世界南部地域のFATE関連デシダータ、特に透明性と倫理について検討する。
インクリシティを促進するために、コミュニティ主導の戦略が提案され、責任あるAI設計のための代表データを収集し、キュレートする。
論文 参考訳(メタデータ) (2023-01-03T15:08:10Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。