論文の概要: Synthetic vascular structure generation for unsupervised pre-training in
CTA segmentation tasks
- arxiv url: http://arxiv.org/abs/2001.00666v1
- Date: Thu, 2 Jan 2020 23:21:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 04:13:49.630059
- Title: Synthetic vascular structure generation for unsupervised pre-training in
CTA segmentation tasks
- Title(参考訳): CTAセグメンテーションタスクにおける教師なし事前トレーニングのための合成血管構造生成
- Authors: Nil Stolt Ans\'o
- Abstract要約: 我々は脳卒中患者の治療における洞察を提供するために,血管セグメンテーションタスクでU-netアーキテクチャを訓練する。
そこで我々は,頭部のCTスキャンにブレンド可能な人工血管構造を生成する計算モデルを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large enough computed tomography (CT) data sets to train supervised deep
models are often hard to come by. One contributing issue is the amount of
manual labor that goes into creating ground truth labels, specially for
volumetric data. In this research, we train a U-net architecture at a vessel
segmentation task that can be used to provide insights when treating stroke
patients. We create a computational model that generates synthetic vascular
structures which can be blended into unlabeled CT scans of the head. This
unsupervised approached to labelling is used to pre-train deep segmentation
models, which are later fine-tuned on real examples to achieve an increase in
accuracy compared to models trained exclusively on a hand-labeled data set.
- Abstract(参考訳): 教師付き深層モデルのトレーニングを行うのに十分な計算トモグラフィー(CT)データセットは難しいことが多い。
貢献する問題の1つは、特にボリュームデータのために、基礎となる真理ラベルを作成するための手作業の量である。
本研究では,脳卒中患者の治療における洞察を提供するために,血管分割作業においてU-netアーキテクチャを訓練する。
そこで我々は,頭部のCTスキャンにブレンド可能な人工血管構造を生成する計算モデルを構築した。
ラベル付けに対する教師なしアプローチは、深いセグメンテーションモデルの事前学習に使用され、これは後に実例で微調整され、手ラベルデータセットでのみトレーニングされたモデルと比較して精度が向上する。
関連論文リスト
- Enhanced segmentation of femoral bone metastasis in CT scans of patients using synthetic data generation with 3D diffusion models [0.06700983301090582]
本稿では,3次元拡散確率モデル(DDPM)を用いた自動データパイプラインを提案する。
5675巻を新たに作成し,実データと合成データに基づいて3次元U-Netセグメンテーションモデルを訓練し,セグメンテーション性能を比較した。
論文 参考訳(メタデータ) (2024-09-17T09:21:19Z) - Federated Foundation Model for Cardiac CT Imaging [25.98149779380328]
これまでで最も大きな心エコー画像解析を行い、部分的にラベル付けされたデータセットに焦点をあてた。
タスク固有のCNNからの知識を1つのトランスフォーマーモデルに抽出する2段階の半教師付き学習戦略を開発した。
論文 参考訳(メタデータ) (2024-07-10T11:30:50Z) - Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors [0.0]
限られたアノテートデータのみを使用して事前訓練されたモデルを転送するには、少ないショットの学習アプローチが費用対効果がある。
我々は,肺CTスキャンにおいて,気道の効率を高めるために,データ駆動型スペーシフィケーションモジュールを訓練する。
次に、これらのスパース表現を標準教師付きセグメンテーションパイプラインに組み込み、DLモデルの性能を高めるための事前学習ステップとする。
論文 参考訳(メタデータ) (2024-07-05T13:46:11Z) - A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
オプティカル・コヒーレンス・トモグラフィー (OCT) は, 死後神経血管の研究でますます人気が高まっている。
ここでは、深層学習セグメンテーションモデルをトレーニングするために、容器の合成データセットを活用する。
どちらのアプローチも同様のDiceスコアを得るが、偽陽性と偽陰率は非常に異なる。
論文 参考訳(メタデータ) (2024-05-22T15:39:31Z) - Sparse Anatomical Prompt Semi-Supervised Learning with Masked Image
Modeling for CBCT Tooth Segmentation [10.617296334463942]
Cone Beam Computed Tomography (CBCT) 歯科画像における歯の識別とセグメンテーションは, 歯科医が行う手技診断の効率と精度を著しく向上させることができる。
既存のセグメンテーション手法は主に大規模なデータボリュームトレーニングに基づいて開発され、そのアノテーションは非常に時間がかかります。
本研究では, 大量の未ラベルデータを効果的に活用し, 限られたラベル付きデータで正確な歯のセグメンテーションを実現するタスク指向Masked Auto-Encoderパラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-07T05:05:21Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
本稿では,ルールベースのドイツ語CheXpertモデルによってラベル付けされたレポートに基づいて,ディープラーニングに基づくCheXpertラベル予測モデルを提案する。
その結果,3つのタスクすべてにおいて,ルールベースモデルを大幅に上回ったアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-06-09T16:08:35Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。