論文の概要: Self learning robot using real-time neural networks
- arxiv url: http://arxiv.org/abs/2001.02103v1
- Date: Mon, 6 Jan 2020 13:13:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 03:04:02.517017
- Title: Self learning robot using real-time neural networks
- Title(参考訳): ニューラルネットワークを用いた自己学習ロボット
- Authors: Chirag Gupta, Chikita Nangia, Chetan Kumar
- Abstract要約: 本稿では,ロボットの腕に実装されたニューラルネットワークの研究,開発,実験的解析を行う。
ニューラルネットワークは、グラディエントDescentとバックプロパゲーションのアルゴリズムを用いて学習する。
ニューラルネットワークの実装とトレーニングは、Raspberry pi 3上のロボット上でローカルに行われ、学習プロセスは完全に独立している。
- 参考スコア(独自算出の注目度): 7.347989843033033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancements in high volume, low precision computational technology
and applied research on cognitive artificially intelligent heuristic systems,
machine learning solutions through neural networks with real-time learning has
seen an immense interest in the research community as well the industry. This
paper involves research, development and experimental analysis of a neural
network implemented on a robot with an arm through which evolves to learn to
walk in a straight line or as required. The neural network learns using the
algorithms of Gradient Descent and Backpropagation. Both the implementation and
training of the neural network is done locally on the robot on a raspberry pi 3
so that its learning process is completely independent. The neural network is
first tested on a custom simulator developed on MATLAB and then implemented on
the raspberry computer. Data at each generation of the evolving network is
stored, and analysis both mathematical and graphical is done on the data.
Impact of factors like the learning rate and error tolerance on the learning
process and final output is analyzed.
- Abstract(参考訳): 高ボリューム、低精度の計算技術、認知的人工知的なヒューリスティックシステムに関する応用研究の進展に伴い、リアルタイム学習を伴うニューラルネットワークによる機械学習ソリューションは、業界だけでなく研究コミュニティにも大きな関心を寄せている。
本研究は,ロボットにロボットを介在させたニューラルネットワークの研究,開発,実験的解析を行い,必要な直線を歩いたり,必要に応じて歩いたりすることを学習する。
ニューラルネットワークは、グラディエントDescentとバックプロパゲーションのアルゴリズムを用いて学習する。
ニューラルネットワークの実装とトレーニングは、raspberry pi 3上のロボット上でローカルに行われ、学習プロセスは完全に独立している。
ニューラルネットワークはまずmatlabで開発されたカスタムシミュレータでテストされ、その後raspberryコンピュータで実装された。
進化するネットワークの各世代のデータを格納し、そのデータ上で数学的およびグラフィカルの両方の分析を行う。
学習速度や誤り許容度といった要因が学習過程と最終出力に与える影響を分析する。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networksは、電力効率、計算効率、処理遅延を大幅に改善する新しいニューラルネットワーク設計アプローチである。
まず,複雑なディープラーニングタスク,すなわちLidarベースの3Dオブジェクト検出による自動運転への適用性について説明する。
論文 参考訳(メタデータ) (2022-06-06T20:05:17Z) - aSTDP: A More Biologically Plausible Learning [0.0]
我々は,新しいニューラルネットワーク学習フレームワークSTDPを導入する。
教師なしおよび教師なしの学習にはSTDPルールのみを使用する。
追加設定なしで予測したり、ひとつのモデルでパターンを生成できる。
論文 参考訳(メタデータ) (2022-05-22T08:12:50Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。