Spin-controlled generation of indistinguishable and distinguishable
photons from silicon vacancy centres in silicon carbide
- URL: http://arxiv.org/abs/2001.02455v2
- Date: Fri, 10 Jan 2020 09:52:58 GMT
- Title: Spin-controlled generation of indistinguishable and distinguishable
photons from silicon vacancy centres in silicon carbide
- Authors: Naoya Morioka, Charles Babin, Roland Nagy, Izel Gediz, Erik
Hesselmeier, Di Liu, Matthew Joliffe, Matthias Niethammer, Durga Dasari,
Vadim Vorobyov, Roman Kolesov, Rainer St\"ohr, Jawad Ul-Hassan, Nguyen Tien
Son, Takeshi Ohshima, P\'eter Udvarhelyi, Gerg\H{o} Thiering, Adam Gali,
J\"org Wrachtrup, Florian Kaiser
- Abstract summary: Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking.
Here, we demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation.
We exploit the system's intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons.
- Score: 1.3428816436609148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum systems combining indistinguishable photon generation and spin-based
quantum information processing are essential for remote quantum applications
and networking. However, identification of suitable systems in scalable
platforms remains a challenge. Here, we investigate the silicon vacancy centre
in silicon carbide and demonstrate controlled emission of indistinguishable and
distinguishable photons via coherent spin manipulation. Using strong
off-resonant excitation and collecting photons from the ultra-stable
zero-phonon line optical transitions, we show a two-photon interference
contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit
the system's intimate spin-photon relation to spin-control the colour and
indistinguishability of consecutively emitted photons. Our results provide a
deep insight into the system's spin-phonon-photon physics and underline the
potential of the industrially compatible silicon carbide platform for
measurement-based entanglement distribution and photonic cluster state
generation. Additional coupling to quantum registers based on recently
demonstrated coupled individual nuclear spins would further allow for
high-level network-relevant quantum information processing, such as error
correction and entanglement purification.
Related papers
- Ultra-high strained diamond spin register with coherent optical link [45.40010446596688]
Solid-state spin defects, such as color centers in diamond, are among the most promising candidates for scalable and integrated quantum technologies.
We show that leveraging an ultra-high strained silicon-vacancy center inside a nanodiamond allows us to coherently and efficiently control its electron spin, while mitigating phonon-induced dephasing at liquid helium temperature.
Our work paves the way for future integration of quantum network registers into conventional, well-established photonics and hybrid quantum communication systems.
arXiv Detail & Related papers (2024-09-19T10:46:24Z) - Experimental Generation of Spin-Photon Entanglement in Silicon Carbide [9.89461825381694]
We experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line.
Photonic qubit is encoded in the time-bin degree-of-freedom and measured using an unbalanced Mach-Zehnder interferometer.
arXiv Detail & Related papers (2023-11-29T08:52:18Z) - Deterministic photon source of genuine three-qubit entanglement [4.416507176974232]
A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode.
By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized.
arXiv Detail & Related papers (2023-10-18T15:22:36Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Integrated quantum photonics with silicon carbide: challenges and
prospects [0.0]
Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
arXiv Detail & Related papers (2020-10-29T15:44:13Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.