論文の概要: An Analysis of Object Representations in Deep Visual Trackers
- arxiv url: http://arxiv.org/abs/2001.02593v1
- Date: Wed, 8 Jan 2020 16:03:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 12:40:55.101217
- Title: An Analysis of Object Representations in Deep Visual Trackers
- Title(参考訳): ディープビジュアルトラッカーにおける物体表現の分析
- Authors: Ross Goroshin, Jonathan Tompson, Debidatta Dwibedi
- Abstract要約: ディープトラッカーは、オブジェクトのインスタンス表現に頼らずに、唾液度検出によるトラッキングをデフォルトとすることが多い。
分析の結果,より堅牢な追跡戦略の出現を防止できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 13.984079806840542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully convolutional deep correlation networks are integral components of
state-of the-art approaches to single object visual tracking. It is commonly
assumed that these networks perform tracking by detection by matching features
of the object instance with features of the entire frame. Strong architectural
priors and conditioning on the object representation is thought to encourage
this tracking strategy. Despite these strong priors, we show that deep trackers
often default to tracking by saliency detection - without relying on the object
instance representation. Our analysis shows that despite being a useful prior,
salience detection can prevent the emergence of more robust tracking strategies
in deep networks. This leads us to introduce an auxiliary detection task that
encourages more discriminative object representations that improve tracking
performance.
- Abstract(参考訳): 完全畳み込み型ディープ相関ネットワークは、単一のオブジェクトのビジュアルトラッキングに対する最先端のアプローチの不可欠なコンポーネントである。
これらのネットワークは、オブジェクトインスタンスの特徴とフレーム全体の特徴とを一致させて、検出によって追跡を行う。
オブジェクト表現に対する強いアーキテクチャの事前と条件付けは、この追跡戦略を奨励すると考えられている。
このような強い先行例にもかかわらず、ディープトラッカは、しばしば、オブジェクトインスタンスの表現に頼ることなく、サリエンシ検出によるトラッキングをデフォルトにしている。
分析結果から,深層ネットワークにおけるより堅牢な追跡戦略の出現を回避できる可能性が示唆された。
これにより、より識別的なオブジェクト表現を奨励し、追跡性能を向上させる補助検出タスクが導入された。
関連論文リスト
- Leveraging Object Priors for Point Tracking [25.030407197192]
ポイントトラッキングは、コンピュータビジョンにおける基本的な問題であり、多くのARやロボット工学への応用がある。
本稿では,対象の先行点に注意を向ける新たな対象性正規化手法を提案する。
提案手法は,3点追跡ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T16:48:42Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
オクルージョンは、物体検出器やトラッカーが直面する最も重要な課題の1つである。
本稿では,領域ベースビデオオブジェクト検出装置の成功に基づくトラッキング・バイ・検出手法を提案する。
提案手法は,インターネットから収集した家具組立ビデオのデータセットにおいて,優れた結果が得られる。
論文 参考訳(メタデータ) (2021-06-20T22:29:46Z) - Tracking by Joint Local and Global Search: A Target-aware Attention
based Approach [63.50045332644818]
本研究では、ロバストな追跡のための局所的・グローバルな共同探索を行うための新たな目標認識型アテンション機構(TANet)を提案する。
具体的には、ターゲットオブジェクトパッチと連続ビデオフレームの特徴を抽出し、それらをデコーダネットワークに追従して、ターゲットを意識したグローバルアテンションマップを生成する。
追跡手順において、ロバストな追跡のための候補探索領域を探索することにより、ターゲット認識の注意を複数のトラッカーと統合する。
論文 参考訳(メタデータ) (2021-06-09T06:54:15Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
本研究では,事前訓練したMask R-CNNディープオブジェクト検出器をベースラインとして採用する。
本研究では,Mask R-CNNのFPN-ResNet101バックボーン上に新しい推論アーキテクチャを導入し,検出と追跡を共同で行う。
提案する単一オブジェクトトラッカであるtdiotは、データアソシエーションに外観類似性に基づく時間マッチングを適用する。
論文 参考訳(メタデータ) (2021-03-19T20:45:06Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Blending of Learning-based Tracking and Object Detection for Monocular
Camera-based Target Following [2.578242050187029]
本稿では,ジェネリックターゲットトラッカーとオブジェクト検出モジュールを対象再識別モジュールと融合するリアルタイムアプローチを提案する。
本研究は,進化的リカレントニューラルネットワークを用いたオブジェクトトラッカーの性能向上に重点を置いている。
論文 参考訳(メタデータ) (2020-08-21T18:44:35Z) - End-to-End Multi-Object Tracking with Global Response Map [23.755882375664875]
画像シーケンス/映像を入力とし、学習対象の位置と追跡対象を直接出力する、完全にエンドツーエンドのアプローチを提案する。
具体的には,提案した多目的表現戦略により,グローバル応答マップをフレーム上で正確に生成することができる。
MOT16 と MOT17 のベンチマークによる実験結果から,提案したオンライントラッカーは,いくつかのトラッキング指標において最先端の性能を達成した。
論文 参考訳(メタデータ) (2020-07-13T12:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。