The Counterfactual $\chi$-GAN
- URL: http://arxiv.org/abs/2001.03115v2
- Date: Thu, 3 Dec 2020 14:14:20 GMT
- Title: The Counterfactual $\chi$-GAN
- Authors: Amelia J. Averitt, Natnicha Vanitchanant, Rajesh Ranganath, and Adler
J. Perotte
- Abstract summary: Causal inference often relies on the counterfactual framework, which requires that treatment assignment is independent of the outcome.
This work proposes a generative adversarial network (GAN)-based model called the Counterfactual $chi$-GAN (cGAN)
- Score: 20.42556178617068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference often relies on the counterfactual framework, which requires
that treatment assignment is independent of the outcome, known as strong
ignorability. Approaches to enforcing strong ignorability in causal analyses of
observational data include weighting and matching methods. Effect estimates,
such as the average treatment effect (ATE), are then estimated as expectations
under the reweighted or matched distribution, P . The choice of P is important
and can impact the interpretation of the effect estimate and the variance of
effect estimates. In this work, instead of specifying P, we learn a
distribution that simultaneously maximizes coverage and minimizes variance of
ATE estimates. In order to learn this distribution, this research proposes a
generative adversarial network (GAN)-based model called the Counterfactual
$\chi$-GAN (cGAN), which also learns feature-balancing weights and supports
unbiased causal estimation in the absence of unobserved confounding. Our model
minimizes the Pearson $\chi^2$ divergence, which we show simultaneously
maximizes coverage and minimizes the variance of importance sampling estimates.
To our knowledge, this is the first such application of the Pearson $\chi^2$
divergence. We demonstrate the effectiveness of cGAN in achieving feature
balance relative to established weighting methods in simulation and with
real-world medical data.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - On the Pitfalls of Heteroscedastic Uncertainty Estimation with
Probabilistic Neural Networks [23.502721524477444]
We present a synthetic example illustrating how this approach can lead to very poor but stable estimates.
We identify the culprit to be the log-likelihood loss, along with certain conditions that exacerbate the issue.
We present an alternative formulation, termed $beta$-NLL, in which each data point's contribution to the loss is weighted by the $beta$-exponentiated variance estimate.
arXiv Detail & Related papers (2022-03-17T08:46:17Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
We study the problem of measuring the fairness of a machine learning model under noisy information.
We present a theoretical analysis that aims to characterize weaker conditions under which accurate fairness evaluation is possible.
arXiv Detail & Related papers (2021-05-20T18:36:28Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
We frame this challenge as a problem of feature acquisition of confounding features for causal inference.
Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation.
arXiv Detail & Related papers (2020-11-17T16:28:43Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.