Time-Varying Graph Learning with Constraints on Graph Temporal Variation
- URL: http://arxiv.org/abs/2001.03346v1
- Date: Fri, 10 Jan 2020 08:33:51 GMT
- Title: Time-Varying Graph Learning with Constraints on Graph Temporal Variation
- Authors: Koki Yamada, Yuichi Tanaka, Antonio Ortega
- Abstract summary: We introduce two regularization terms in convex optimization problems that constrain sparseness of temporal variations of time-varying networks.
A computationally-scalable algorithm is introduced to efficiently solve the optimization problem.
- Score: 46.218671952531324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework for learning time-varying graphs from
spatiotemporal measurements. Given an appropriate prior on the temporal
behavior of signals, our proposed method can estimate time-varying graphs from
a small number of available measurements. To achieve this, we introduce two
regularization terms in convex optimization problems that constrain sparseness
of temporal variations of the time-varying networks. Moreover, a
computationally-scalable algorithm is introduced to efficiently solve the
optimization problem. The experimental results with synthetic and real datasets
(point cloud and temperature data) demonstrate our proposed method outperforms
the existing state-of-the-art methods.
Related papers
- Dimensionality Collapse: Optimal Measurement Selection for Low-Error
Infinite-Horizon Forecasting [3.5788754401889022]
We solve the problem of sequential linear measurement design as an infinite-horizon problem with the time-averaged trace of the Cram'er-Rao lower bound (CRLB) for forecasting as the cost.
By introducing theoretical results regarding measurements under additive noise from natural exponential families, we construct an equivalent problem from which a local dimensionality reduction can be derived.
This alternative formulation is based on the future collapse of dimensionality inherent in the limiting behavior of many differential equations and can be directly observed in the low-rank structure of the CRLB for forecasting.
arXiv Detail & Related papers (2023-03-27T17:25:04Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
Methods for machine learning on temporal networks generally exhibit at least one of two limitations.
We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions.
Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.
arXiv Detail & Related papers (2022-09-30T18:24:13Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
We propose a graph learning framework that learns the relational dependencies as distributions over graphs.
We show that the proposed solution can be used as a stand-alone graph identification procedure as well as a graph learning component of an end-to-end forecasting architecture.
arXiv Detail & Related papers (2022-05-26T17:02:43Z) - Learning Sparse Graphs via Majorization-Minimization for Smooth Node
Signals [8.140698535149042]
We propose an algorithm for learning a sparse weighted graph by estimating its adjacency matrix.
We show that the proposed algorithm converges faster, in terms of the average number of iterations, than several existing methods in the literature.
arXiv Detail & Related papers (2022-02-06T17:06:13Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets [0.0]
A novel approach for the construction and training of time series models is presented.
The proposed method is appropriate for constructing predictive models for non-stationary time series.
arXiv Detail & Related papers (2020-11-23T21:28:03Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
arXiv Detail & Related papers (2020-09-16T14:19:23Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Time-varying Gaussian Process Bandit Optimization with Non-constant
Evaluation Time [93.6788993843846]
We propose a novel time-varying Bayesian optimization algorithm that can effectively handle the non-constant evaluation time.
Our bound elucidates that a pattern of the evaluation time sequence can hugely affect the difficulty of the problem.
arXiv Detail & Related papers (2020-03-10T13:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.