論文の概要: Co-evolution of language and agents in referential games
- arxiv url: http://arxiv.org/abs/2001.03361v3
- Date: Sat, 30 Jan 2021 09:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:04:43.226117
- Title: Co-evolution of language and agents in referential games
- Title(参考訳): 参照ゲームにおける言語とエージェントの共進化
- Authors: Gautier Dagan, Dieuwke Hupkes and Elia Bruni
- Abstract要約: 言語学習者の学習バイアスを考慮し,言語とエージェントを共進化させることが最適であることを示す。
言語発生研究における言語共進化の解明の道を開く。
- 参考スコア(独自算出の注目度): 24.708802957946467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referential games offer a grounded learning environment for neural agents
which accounts for the fact that language is functionally used to communicate.
However, they do not take into account a second constraint considered to be
fundamental for the shape of human language: that it must be learnable by new
language learners.
Cogswell et al. (2019) introduced cultural transmission within referential
games through a changing population of agents to constrain the emerging
language to be learnable. However, the resulting languages remain inherently
biased by the agents' underlying capabilities.
In this work, we introduce Language Transmission Engine to model both
cultural and architectural evolution in a population of agents. As our core
contribution, we empirically show that the optimal situation is to take into
account also the learning biases of the language learners and thus let language
and agents co-evolve. When we allow the agent population to evolve through
architectural evolution, we achieve across the board improvements on all
considered metrics and surpass the gains made with cultural transmission. These
results stress the importance of studying the underlying agent architecture and
pave the way to investigate the co-evolution of language and agent in language
emergence studies.
- Abstract(参考訳): 参照ゲームは、言語が機能的にコミュニケーションに使われているという事実を説明する神経エージェントのための基礎学習環境を提供する。
しかし、新しい言語学習者によって学習可能でなければならないという、人間の言語の形状に基本的と考えられる2つ目の制約を考慮に入れていない。
cogswell et al. (2019)は、新たな言語を学習可能なものに制限するために、エージェントの集団の変化を通じて、レファレンシャルゲーム内で文化伝達を導入した。
しかし、結果の言語は本質的にエージェントの基盤能力に偏っている。
本稿では,エージェントの集団における文化的・建築的進化をモデル化するLanguage Transmission Engineを紹介する。
私たちの中心となる貢献として,言語学習者の学習バイアスも考慮し,言語とエージェントを共進化させることが最適な状況であることを実証的に示す。
エージェントの人口がアーキテクチャの進化を通じて進化することを許すと、考慮された指標のすべてにおいてボード全体の改善を達成し、文化的な伝達によって得られる利益を超越します。
これらの結果は、基礎となるエージェントアーキテクチャを研究することの重要性を強調し、言語創発研究における言語とエージェントの共進化を研究する道を開いた。
関連論文リスト
- Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use [16.425032085699698]
具体的エージェントは、人間の言語を活用して、学習タスクの明示的または暗黙的な知識を得る能力を持つことが望ましい。
タスク学習を容易にするために、リッチ言語をどのように組み込むかは明確ではない。
本稿では,強化学習における言語入力の種類について検討する。
論文 参考訳(メタデータ) (2024-10-31T17:59:52Z) - Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Unveiling the pressures underlying language learning and use in neural networks, large language models, and humans: Lessons from emergent machine-to-machine communication [5.371337604556311]
本稿では,ニューラルエージェントと人間の言語行動のミスマッチが解決された3症例について概説する。
我々は、コミュニケーションの成功、生産努力、学習可能性、その他の心理・社会言語学的要因といった、言語学習と台頭のための重要なプレッシャーを識別する。
論文 参考訳(メタデータ) (2024-03-21T14:33:34Z) - Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - Transforming Human-Centered AI Collaboration: Redefining Embodied Agents
Capabilities through Interactive Grounded Language Instructions [23.318236094953072]
人間の知能の適応性は目覚ましいもので、新しいタスクやマルチモーダル環境に迅速に適応することができる。
研究コミュニティはインタラクティブな「身体的エージェント」の開発を積極的に進めている
これらのエージェントは、コミュニケーションが壊れたり、指示が不明確であったりした場合に、迅速にフィードバックをリクエストする能力を持っていなければならない。
論文 参考訳(メタデータ) (2023-05-18T07:51:33Z) - Computational Language Acquisition with Theory of Mind [84.2267302901888]
我々は、心の理論(ToM)を備えた言語学習エージェントを構築し、その学習過程への影響を測定する。
重み付けされたToMリスナーコンポーネントを用いた学習話者は,画像参照ゲームの設定において,性能向上につながることがわかった。
論文 参考訳(メタデータ) (2023-03-02T18:59:46Z) - Communication Drives the Emergence of Language Universals in Neural
Agents: Evidence from the Word-order/Case-marking Trade-off [3.631024220680066]
ニューラルエージェント言語学習通信フレームワーク(NeLLCom)を提案する。
我々はエージェントに特定のバイアスをハードコーディングすることなく、新しいフレームワークでトレードオフを複製することに成功しました。
論文 参考訳(メタデータ) (2023-01-30T17:22:33Z) - Linking Emergent and Natural Languages via Corpus Transfer [98.98724497178247]
創発言語と自然言語のコーパス転送によるリンクを確立する新しい方法を提案する。
このアプローチでは,言語モデリングとイメージキャプションという,2つの異なるタスクに対して,非自明な転送メリットを示す。
また,同一画像に基づく自然言語キャプションに創発的メッセージを翻訳することで,創発的言語の伝達可能性を予測する新しい指標を提案する。
論文 参考訳(メタデータ) (2022-03-24T21:24:54Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Emergent Multi-Agent Communication in the Deep Learning Era [26.764052787245728]
言語を通して協力する能力は、人間の決定的な特徴である。
深層人工ネットワークの知覚、運動、計画能力が増大するにつれて、研究者らは対話する共通の言語を開発することができるかどうかを研究している。
論文 参考訳(メタデータ) (2020-06-03T17:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。