論文の概要: Emergent Multi-Agent Communication in the Deep Learning Era
- arxiv url: http://arxiv.org/abs/2006.02419v2
- Date: Tue, 14 Jul 2020 09:21:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 17:19:15.738557
- Title: Emergent Multi-Agent Communication in the Deep Learning Era
- Title(参考訳): 深層学習時代の創発的マルチエージェントコミュニケーション
- Authors: Angeliki Lazaridou, Marco Baroni
- Abstract要約: 言語を通して協力する能力は、人間の決定的な特徴である。
深層人工ネットワークの知覚、運動、計画能力が増大するにつれて、研究者らは対話する共通の言語を開発することができるかどうかを研究している。
- 参考スコア(独自算出の注目度): 26.764052787245728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to cooperate through language is a defining feature of humans. As
the perceptual, motory and planning capabilities of deep artificial networks
increase, researchers are studying whether they also can develop a shared
language to interact. From a scientific perspective, understanding the
conditions under which language evolves in communities of deep agents and its
emergent features can shed light on human language evolution. From an applied
perspective, endowing deep networks with the ability to solve problems
interactively by communicating with each other and with us should make them
more flexible and useful in everyday life.
This article surveys representative recent language emergence studies from
both of these two angles.
- Abstract(参考訳): 言語を通して協力する能力は、人間の定義的な特徴である。
深層人工ネットワークの知覚、運動、計画能力が増大するにつれて、研究者は相互作用するための共有言語の開発も可能であるかどうかの研究を行っている。
科学的観点から、深いエージェントのコミュニティで言語が進化する条件を理解することは、人間の言語進化に光を当てることができる。
応用の観点からは、ディープネットワークに相互通信によって対話的に問題を解決する能力を持たせることで、日々の生活においてより柔軟で有用なものにすることができる。
本稿では,この2つの角度から最近の言語出現研究について概説する。
関連論文リスト
- Unveiling the pressures underlying language learning and use in neural networks, large language models, and humans: Lessons from emergent machine-to-machine communication [5.371337604556311]
本稿では,ニューラルエージェントと人間の言語行動のミスマッチが解決された3症例について概説する。
我々は、コミュニケーションの成功、生産努力、学習可能性、その他の心理・社会言語学的要因といった、言語学習と台頭のための重要なプレッシャーを識別する。
論文 参考訳(メタデータ) (2024-03-21T14:33:34Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
創発的コミュニケーション(英: Emergent Communication, Emecom)は、自然言語を利用できる人工エージェントの開発を目的とした研究分野である。
本稿では,文献の共通点と,それらが人間同士の相互作用にどのように関係しているかを概説する。
2つのサブカテゴリを特定し、その特性とオープンな課題を強調します。
論文 参考訳(メタデータ) (2023-08-01T14:43:10Z) - Transforming Human-Centered AI Collaboration: Redefining Embodied Agents
Capabilities through Interactive Grounded Language Instructions [23.318236094953072]
人間の知能の適応性は目覚ましいもので、新しいタスクやマルチモーダル環境に迅速に適応することができる。
研究コミュニティはインタラクティブな「身体的エージェント」の開発を積極的に進めている
これらのエージェントは、コミュニケーションが壊れたり、指示が不明確であったりした場合に、迅速にフィードバックをリクエストする能力を持っていなければならない。
論文 参考訳(メタデータ) (2023-05-18T07:51:33Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
言語理解は認知科学とコンピュータ科学の分野で重要な科学的問題である。
これらの規律を組み合わせることで、インテリジェントな言語モデルを構築する上で、新たな洞察が得られますか?
論文 参考訳(メタデータ) (2023-01-12T02:37:00Z) - Collecting Interactive Multi-modal Datasets for Grounded Language
Understanding [66.30648042100123]
自然言語タスクを用いた協調型エンボディエージェントの定式化を行った。
広範かつスケーラブルなデータ収集ツールを開発しました。
対話型基底言語理解のための最初のデータセットを収集した。
論文 参考訳(メタデータ) (2022-11-12T02:36:32Z) - Emergence of Machine Language: Towards Symbolic Intelligence with Neural
Networks [73.94290462239061]
本稿では、ニューラルネットワークを用いてシンボルとコネクショナリズムの原理を組み合わせることで、離散表現を導出することを提案する。
対話型環境とタスクを設計することにより、機械が自発的で柔軟でセマンティックな言語を生成できることを実証した。
論文 参考訳(メタデータ) (2022-01-14T14:54:58Z) - Multi-lingual agents through multi-headed neural networks [0.0]
本稿では,協調型マルチエージェント強化学習について述べる。
この文脈では、複数の異なる非互換言語が出現する。
我々は、連続学習の文献からインスピレーションを得て、エージェントを多言語化できるように、エージェントにマルチヘッドニューラルネットワークを装備する。
論文 参考訳(メタデータ) (2021-11-22T11:39:42Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Experience Grounds Language [185.73483760454454]
言語理解研究は、言語が記述する物理的世界と、それが促進する社会的相互作用とを関連づけることに失敗している。
テキストだけで訓練された後にタスクに取り組むための言語処理モデルの驚くべき効果にもかかわらず、成功した言語コミュニケーションは世界の共有経験に依存している。
論文 参考訳(メタデータ) (2020-04-21T16:56:27Z) - Co-evolution of language and agents in referential games [24.708802957946467]
言語学習者の学習バイアスを考慮し,言語とエージェントを共進化させることが最適であることを示す。
言語発生研究における言語共進化の解明の道を開く。
論文 参考訳(メタデータ) (2020-01-10T09:29:20Z) - Vision and Language: from Visual Perception to Content Creation [100.36776435627962]
言語へのビジョン"は、おそらく過去5年で最も人気のあるトピックの1つである。
本稿は、これらの2つの側面に沿った最近の進歩、すなわち「言語へのビジョン」と「視覚への言語」を概観する。
論文 参考訳(メタデータ) (2019-12-26T14:07:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。