Exhaustive search for optimal molecular geometries using imaginary-time
evolution on a quantum computer
- URL: http://arxiv.org/abs/2210.09883v2
- Date: Fri, 3 Nov 2023 16:56:36 GMT
- Title: Exhaustive search for optimal molecular geometries using imaginary-time
evolution on a quantum computer
- Authors: Taichi Kosugi, Hirofumi Nishi, Yuichiro Matsushita
- Abstract summary: We propose a nonvariational scheme for geometry optimization of molecules for the first-quantized eigensolver.
We encode both electronic states and candidate molecular geometries as a superposition of many-qubit states.
We show that the circuit depth scales as O (n_e2 poly(log n_e)) for the electron number n_e, which can be reduced to O (n_e poly(log n_e)) if extra O (n_e log n_e) qubits are available.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a nonvariational scheme for geometry optimization of molecules for
the first-quantized eigensolver, a recently proposed framework for quantum
chemistry using the probabilistic imaginary-time evolution (PITE) on a quantum
computer. While the electrons in a molecule are treated in the scheme as
quantum mechanical particles, the nuclei are treated as classical point
charges. We encode both electronic states and candidate molecular geometries as
a superposition of many-qubit states, leading to quantum advantage. The
histogram formed by outcomes of repeated measurements gives the global minimum
of the energy surface. We demonstrate that the circuit depth scales as O (n_e^2
poly(log n_e)) for the electron number n_e, which can be reduced to O (n_e
poly(log n_e)) if extra O (n_e log n_e) qubits are available. We corroborate
the scheme via numerical simulations. The new efficient scheme will be helpful
for achieving scalability of practical quantum chemistry on quantum computers.
As a special case of the scheme, a classical system composed only of charged
particles is admitted. We also examine the scheme adapted to variational
calculations that prioritize saving circuit depths for noisy intermediate-scale
quantum (NISQ) devices.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z) - Quantum computation of molecular response properties [12.66895275733527]
We propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers.
On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.
arXiv Detail & Related papers (2020-01-10T12:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.