論文の概要: A smile I could recognise in a thousand: Automatic identification of
identity from dental radiography
- arxiv url: http://arxiv.org/abs/2001.05006v1
- Date: Tue, 14 Jan 2020 19:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 12:51:36.696808
- Title: A smile I could recognise in a thousand: Automatic identification of
identity from dental radiography
- Title(参考訳): 1000個で認識できた笑顔:歯科用x線写真からのアイデンティティの自動識別
- Authors: Oscar de Felice, Gustavo de Felice
- Abstract要約: 歯科的特徴から患者の身元を知るために,複数のX線写真を自動的に比較する方法を提案する。
このような手法の主たる応用(また、この問題を研究する動機)は、大災害における被害者の識別である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a method to automatically compare multiple
radiographs in order to find the identity of a patient out of the dental
features. The method is based on the matching of image features, previously
extracted by computer vision algorithms for image descriptor recognition. The
principal application (being also our motivation to study the problem) of such
a method would be in victim identification in mass disasters.
- Abstract(参考訳): 本稿では, 歯科的特徴から患者の同一性を見出すために, 複数のx線写真を自動的に比較する手法を提案する。
画像記述子認識のためのコンピュータビジョンアルゴリズムによって以前に抽出された画像特徴のマッチングに基づく。
このような方法の主な応用(問題を研究する動機でもある)は、大量災害における被害者識別である。
関連論文リスト
- Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - Anonymizing medical case-based explanations through disentanglement [4.006745047019996]
本稿では,画像の同一性や医学的特徴を識別する新しい手法を提案し,それを医用画像の匿名化に適用する。
切り離し機構は、画像内のいくつかの特徴ベクトルを置き換えると同時に、残りの特徴が保存されることを保証する。
また、原画像のアイデンティティを置き換え、匿名化を実現するために、合成プライバシ保護IDを製造するモデルを提案する。
論文 参考訳(メタデータ) (2023-11-08T16:58:58Z) - Analyzing eyebrow region for morphed image detection [4.879461135691896]
提案手法は,眼窩領域の周波数を解析することに基づく。
以上の結果から,本手法は画像の変形検出に有用なツールである可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-30T06:11:27Z) - Human Saliency-Driven Patch-based Matching for Interpretable Post-mortem
Iris Recognition [5.7477871490034005]
そこで本研究では,ヒトの唾液度を学習し,完全に解釈可能な比較結果を与える,独自の死後虹彩認識手法を提案する。
提案手法は, 商業的(非人間解釈可能な) VeriEye 手法よりも優れた結果を示した。
論文 参考訳(メタデータ) (2022-08-03T19:40:44Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
本稿では, 対人学習を利用して, 異なる偽造法と顔の同一性による負の効果を除去する手法を提案する。
我々の顔偽造検出モデルは、偽造法や顔の同一性の影響を排除し、共通の識別的特徴を抽出することを学ぶ。
論文 参考訳(メタデータ) (2022-07-08T09:23:59Z) - Developing a Novel Approach for Periapical Dental Radiographs
Segmentation [1.332560004325655]
提案するアルゴリズムは2段階で構成され,第1段階は前処理である。
このアルゴリズムの第2部と第1部は回転度を計算し、歯の隔離に積分投影法を用いる。
実験結果から, このアルゴリズムは頑健であり, 精度が高いことがわかった。
論文 参考訳(メタデータ) (2021-11-13T17:25:35Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Human Recognition Using Face in Computed Tomography [26.435782518817295]
本稿では、ROI抽出のための3次元顔のランドマークを最初に検出し、自動認識に使用する2次元深度画像を生成する自動処理パイプラインを提案する。
提案手法は,92.53%の1:56同定精度と96.12%の1:1検証精度を達成し,他の競合手法よりも優れていた。
論文 参考訳(メタデータ) (2020-05-28T18:59:59Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。