Contraction-free quantum state encoding by quantum tunneling in single
molecules
- URL: http://arxiv.org/abs/2001.05356v1
- Date: Wed, 15 Jan 2020 14:54:37 GMT
- Title: Contraction-free quantum state encoding by quantum tunneling in single
molecules
- Authors: Tomofumi Tada and Masateru Taniguchi
- Abstract summary: We propose a new system and theory for quantum computing that employs single molecule confinement between electrodes.
The striking features of this system are (i) an individual molecule that exhibits quantum tunneling can be regarded as a sequence of quantum gates, (ii) the quantum tunneling can be encoded onto an array of quantum bits, and (iii) quantum computing by quantum tunneling can be performed at room temperature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is a unique computational approach that promises tremendous
performance that cannot be achieved by classical computers, although several
problems must be resolved to realize a practical quantum computing system for
easy use. Here, we propose a new system and theory for quantum computing that
employs single molecule confinement between electrodes. The striking features
of this system are (i) an individual molecule that exhibits quantum tunneling
can be regarded as a sequence of quantum gates, (ii) the quantum tunneling can
be encoded onto an array of quantum bits and observed without the contraction
of superposition states, and (iii) quantum computing by quantum tunneling can
be performed at room temperature. An adenine molecule is adopted as the single
molecule between electrodes, and conductance data are encoded onto quantum
states including entangled states, depending on the conductance values. As an
application of the new quantum system, molecule identification based on quantum
computing by quantum tunneling is demonstrated.
Related papers
- Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - A perspective on scaling up quantum computation with molecular spins [0.0]
Chemical design allows embedding nontrivial quantum functionalities in each molecular unit.
We discuss how to achieve this goal by the coupling to on-chip superconducting resonators.
arXiv Detail & Related papers (2021-05-03T07:11:36Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.