Joint Liver and Hepatic Lesion Segmentation in MRI using a Hybrid CNN
with Transformer Layers
- URL: http://arxiv.org/abs/2201.10981v3
- Date: Wed, 22 Mar 2023 07:35:10 GMT
- Title: Joint Liver and Hepatic Lesion Segmentation in MRI using a Hybrid CNN
with Transformer Layers
- Authors: Georg Hille, Shubham Agrawal, Pavan Tummala, Christian Wybranski,
Maciej Pech, Alexey Surov, Sylvia Saalfeld
- Abstract summary: This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path.
With Dice scores of averaged 98+-2% for liver and 81+-28% lesion segmentation on the MRI dataset and 97+-2% and 79+-25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation.
- Score: 2.055026516354464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based segmentation of the liver and hepatic lesions therein
steadily gains relevance in clinical practice due to the increasing incidence
of liver cancer each year. Whereas various network variants with overall
promising results in the field of medical image segmentation have been
successfully developed over the last years, almost all of them struggle with
the challenge of accurately segmenting hepatic lesions in magnetic resonance
imaging (MRI). This led to the idea of combining elements of convolutional and
transformer-based architectures to overcome the existing limitations. This work
presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet,
transformer blocks as well as a common Unet-style decoder path. This network
was primarily applied to single-modality non-contrast-enhanced liver MRI and
additionally to the publicly available computed tomography (CT) data of the
liver tumor segmentation (LiTS) challenge to verify the applicability on other
modalities. For a broader evaluation, multiple state-of-the-art networks were
implemented and applied, ensuring a direct comparability. Furthermore,
correlation analysis and an ablation study were carried out, to investigate
various influencing factors on the segmentation accuracy of the presented
method. With Dice scores of averaged 98+-2% for liver and 81+-28% lesion
segmentation on the MRI dataset and 97+-2% and 79+-25%, respectively on the CT
dataset, the proposed SWTR-Unet proved to be a precise approach for liver and
hepatic lesion segmentation with state-of-the-art results for MRI and competing
accuracy in CT imaging. The achieved segmentation accuracy was found to be on
par with manually performed expert segmentations as indicated by inter-observer
variabilities for liver lesion segmentation. In conclusion, the presented
method could save valuable time and resources in clinical practice.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
This work presents a weakly supervised approach to segment anomalies in 2D magnetic resonance images.
We train a generative adversarial network (GAN) that converts cancerous images to healthy variants.
Non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion.
arXiv Detail & Related papers (2022-11-10T00:04:46Z) - Anatomically-Informed Deep Learning on Contrast-Enhanced Cardiac MRI for
Scar Segmentation and Clinical Feature Extraction [6.386874708851962]
Visualizing disease-induced scarring and fibrosis in the heart on cardiac magnetic resonance (CMR) imaging with contrast enhancement (LGE) is paramount in characterizing disease progression and quantifying pathophysiological substrates of arrhythmias.
Here, we present a novel fully-automated deep learning solution for left ventricle (LV) and scar/fibrosis segmentation and clinical feature extraction from LGE-CMR.
The technology involves three cascading convolutional neural networks that segment myocardium and scar/fibrosis from raw LGE-CMR images and constrain these segmentations within anatomical guidelines.
arXiv Detail & Related papers (2020-10-21T15:43:08Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.