The Effect of Data Ordering in Image Classification
- URL: http://arxiv.org/abs/2001.05857v1
- Date: Wed, 8 Jan 2020 20:34:00 GMT
- Title: The Effect of Data Ordering in Image Classification
- Authors: Ethem F. Can, Aysu Ezen-Can
- Abstract summary: In this paper, we focus on the ingredient that feeds these machines: the data.
We conduct experiments on an image classification task using ImageNet dataset and show that some data orderings are better than others in terms of obtaining higher classification accuracies.
Our goal here is to show that not only parameters and model architectures but also the data ordering has a say in obtaining better results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success stories from deep learning models increase every day spanning
different tasks from image classification to natural language understanding.
With the increasing popularity of these models, scientists spend more and more
time finding the optimal parameters and best model architectures for their
tasks. In this paper, we focus on the ingredient that feeds these machines: the
data. We hypothesize that the data ordering affects how well a model performs.
To that end, we conduct experiments on an image classification task using
ImageNet dataset and show that some data orderings are better than others in
terms of obtaining higher classification accuracies. Experimental results show
that independent of model architecture, learning rate and batch size, ordering
of the data significantly affects the outcome. We show these findings using
different metrics: NDCG, accuracy @ 1 and accuracy @ 5. Our goal here is to
show that not only parameters and model architectures but also the data
ordering has a say in obtaining better results.
Related papers
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
Current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions.
In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution.
Our method is model-agnostic and scales easily to large datasets.
arXiv Detail & Related papers (2023-11-03T17:29:46Z) - T-ADAF: Adaptive Data Augmentation Framework for Image Classification
Network based on Tensor T-product Operator [0.0]
This paper proposes an Adaptive Data Augmentation Framework based on the tensor T-product Operator.
It triples one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters.
Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%.
arXiv Detail & Related papers (2023-06-07T08:30:44Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
In this paper we explore the performance of large language models based on instruction tuning across different scales of instruction data.
With Bloomz-7B1-mt as the base model, the results show that merely increasing the amount of instruction data leads to continuous improvement in tasks such as open-ended generation.
We propose potential future research directions such as effectively selecting high-quality training data, scaling base models and training methods specialized for hard tasks.
arXiv Detail & Related papers (2023-03-26T14:49:37Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
We focus on investigating the benefits of data augmentation by analyzing pre-existing image datasets.
Our results show that the performance and robustness of existing state of the art (or SOTA) models can be increased dramatically.
arXiv Detail & Related papers (2022-08-06T03:39:37Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
Similarity between classes can influence the performance of classification.
We propose a method that incorporates class similarity knowledge into convolutional neural networks models.
Experimental results show that our model can improve classification accuracy, especially when the amount of available data is small.
arXiv Detail & Related papers (2020-09-24T18:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.