論文の概要: Bayesian inference of chaotic dynamics by merging data assimilation,
machine learning and expectation-maximization
- arxiv url: http://arxiv.org/abs/2001.06270v2
- Date: Fri, 27 Mar 2020 19:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 10:08:43.849147
- Title: Bayesian inference of chaotic dynamics by merging data assimilation,
machine learning and expectation-maximization
- Title(参考訳): データ同化、機械学習、期待最大化によるカオス力学のベイズ推論
- Authors: Marc Bocquet, Julien Brajard, Alberto Carrassi, Laurent Bertino
- Abstract要約: 我々は、高次元カオス力学を再構築するために、データ同化と機械学習を組み合わせる方法を示す。
我々は,異なる識別可能性を持つ2つの関連する低次カオスモデルに対して,そのアプローチを数値的および成功裏に検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction from observations of high-dimensional chaotic dynamics
such as geophysical flows is hampered by (i) the partial and noisy observations
that can realistically be obtained, (ii) the need to learn from long time
series of data, and (iii) the unstable nature of the dynamics. To achieve such
inference from the observations over long time series, it has been suggested to
combine data assimilation and machine learning in several ways. We show how to
unify these approaches from a Bayesian perspective using
expectation-maximization and coordinate descents. In doing so, the model, the
state trajectory and model error statistics are estimated all together.
Implementations and approximations of these methods are discussed. Finally, we
numerically and successfully test the approach on two relevant low-order
chaotic models with distinct identifiability.
- Abstract(参考訳): 物理流体のような高次元カオス力学の観測による再構成は妨げられる
(i)現実的に得られる部分的かつ騒がしい観察
(ii)時系列データから学ぶ必要があること、
(iii)動力学の不安定な性質。
長期にわたる観測からこのような推論を実現するため,データ同化と機械学習を様々な方法で組み合わせることが提案されている。
期待最大化と座標降下を用いたベイズ的視点からこれらのアプローチを統一する方法を示す。
これにより、モデル、状態軌道およびモデル誤差統計が全て一緒に見積もられる。
これらの手法の実装と近似について論じる。
最後に,異なる識別性を持つ2つの関連低次カオスモデルに対するアプローチを数値的かつうまくテストした。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Score-based Data Assimilation [7.215767098253208]
軌道推定のためのスコアベースのデータ同化を導入する。
我々は、任意の長さの軌道のスコアを、短いセグメントにまたがって一連のスコアに分解できるというキーインサイトに基づいて、状態軌道のスコアに基づく生成モデルを学ぶ。
論文 参考訳(メタデータ) (2023-06-18T14:22:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
本稿では,ベイズ状態空間モデルの隠れ状態を推定するための高速アルゴリズムを提案する。
事前トレーニングの後、データセットの後方分布を見つけるには、100分の1秒から10分の1秒かかる。
論文 参考訳(メタデータ) (2022-10-13T16:37:05Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Data Assimilation Networks [1.5545257664210517]
データ同化は、システムの数学的表現とノイズの観測を組み合わせることで、力学系の状態を予測することを目的としている。
本稿では,再帰的エルマンネットワークとデータ同化アルゴリズムを一般化した完全データ駆動型ディープラーニングアーキテクチャを提案する。
本アーキテクチャは, 明示的な正規化手法を使わずに, システム状態の確率密度関数の解析と伝播の両面において, EnKF に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2020-10-19T17:35:36Z) - Online learning of both state and dynamics using ensemble Kalman filters [0.0]
本稿では,オンライン上での動的および状態の双方,すなわち推定値を常に更新する可能性について検討する。
我々は,(i)グローバルなEnKF,(i)ローカルなEnKF,(iii)反復的なEnKFを通じて,オンラインのダイナミクスを学習することの意味を考察する。
次に,1次元,1スケール,2スケールのカオスロレンツモデルを用いて,これらの手法の有効性を数値的に検証し,精度を評価する。
論文 参考訳(メタデータ) (2020-06-06T13:19:26Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
この方法は、アンサンブルカルマンフィルタとニューラルネットワークを反復的にデータ同化ステップで適用することで構成される。
データ同化は、代理モデルとスパースデータとを最適に組み合わせるために用いられる。
出力分析は空間的に完全であり、サロゲートモデルを更新するためのニューラルネットワークによるトレーニングセットとして使用される。
カオス的な40変数Lorenz 96モデルを用いて数値実験を行い、提案手法の収束と統計的スキルの両立を証明した。
論文 参考訳(メタデータ) (2020-01-06T12:26:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。