論文の概要: Online learning of both state and dynamics using ensemble Kalman filters
- arxiv url: http://arxiv.org/abs/2006.03859v2
- Date: Sun, 4 Oct 2020 15:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 21:43:09.387526
- Title: Online learning of both state and dynamics using ensemble Kalman filters
- Title(参考訳): アンサンブルカルマンフィルタを用いた状態とダイナミクスのオンライン学習
- Authors: Marc Bocquet, Alban Farchi, Quentin Malartic
- Abstract要約: 本稿では,オンライン上での動的および状態の双方,すなわち推定値を常に更新する可能性について検討する。
我々は,(i)グローバルなEnKF,(i)ローカルなEnKF,(iii)反復的なEnKFを通じて,オンラインのダイナミクスを学習することの意味を考察する。
次に,1次元,1スケール,2スケールのカオスロレンツモデルを用いて,これらの手法の有効性を数値的に検証し,精度を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reconstruction of the dynamics of an observed physical system as a
surrogate model has been brought to the fore by recent advances in machine
learning. To deal with partial and noisy observations in that endeavor, machine
learning representations of the surrogate model can be used within a Bayesian
data assimilation framework. However, these approaches require to consider long
time series of observational data, meant to be assimilated all together. This
paper investigates the possibility to learn both the dynamics and the state
online, i.e. to update their estimates at any time, in particular when new
observations are acquired. The estimation is based on the ensemble Kalman
filter (EnKF) family of algorithms using a rather simple representation for the
surrogate model and state augmentation. We consider the implication of learning
dynamics online through (i) a global EnKF, (i) a local EnKF and (iii) an
iterative EnKF and we discuss in each case issues and algorithmic solutions. We
then demonstrate numerically the efficiency and assess the accuracy of these
methods using one-dimensional, one-scale and two-scale chaotic Lorenz models.
- Abstract(参考訳): 近年の機械学習の進歩により,観測された物理系のダイナミクスを代理モデルとして再構築した。
この取り組みにおける部分的および雑音的な観測に対処するため、ベイズデータ同化フレームワーク内で代理モデルの機械学習表現を使用することができる。
しかしながら、これらのアプローチは、互いに同化することを意図した、長期にわたる観測データを考える必要がある。
本稿では,オンライン上でのダイナミクスと状態を学習する可能性,特に新たな観測結果が得られた場合に,その推定値を更新する可能性について検討する。
この推定は、サロゲートモデルと状態拡張のための比較的単純な表現を用いたアンサンブルカルマンフィルタ(enkf)のアルゴリズムファミリーに基づいている。
我々は,(i)グローバルなEnKF,(i)ローカルなEnKF,(iii)反復的なEnKFを通じてオンラインのダイナミクスを学習することの意味を考察し,各事例問題とアルゴリズム的解法について論じる。
次に,1次元,1スケール,2スケールのカオスロレンツモデルを用いて,これらの手法の有効性を数値的に検証し,精度を評価する。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Dynamic Bayesian Learning and Calibration of Spatiotemporal Mechanistic
System [0.0]
ノイズ観測に基づくメカニカルモデルの完全学習と校正のためのアプローチを開発する。
通常の偏微分方程式と偏微分方程式の分析から生じる問題を解くことで、この柔軟性を実証する。
論文 参考訳(メタデータ) (2022-08-12T23:17:46Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
KalmanNetは、データから学習し、非線形力学の下でKalmanフィルタを実行するリアルタイム状態推定器である。
我々は、KalmanNetが非線形性とモデルミスマッチを克服し、古典的なフィルタリング手法より優れていることを数値的に示す。
論文 参考訳(メタデータ) (2021-07-21T12:26:46Z) - Auto-differentiable Ensemble Kalman Filters [21.325532465498913]
本稿では,データ同化における動的システム学習のための機械学習フレームワークを提案する。
我々の自動微分可能アンサンブルカルマンフィルタ(AD-EnKF)は、状態回復のためのアンサンブルカルマンフィルタと、ダイナミックスを学ぶための機械学習ツールをブレンドする。
論文 参考訳(メタデータ) (2021-07-16T03:25:30Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
剛体力学とデータ駆動モデリング技術を組み合わせた回帰モデルについて検討した。
我々は、ニューラルネットワークやガウス過程などのデータ駆動回帰モデルと分析モデル先行モデルの組み合わせに関する統一的な見解を提供する。
論文 参考訳(メタデータ) (2020-12-11T11:26:48Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z) - Bayesian inference of chaotic dynamics by merging data assimilation,
machine learning and expectation-maximization [0.0]
我々は、高次元カオス力学を再構築するために、データ同化と機械学習を組み合わせる方法を示す。
我々は,異なる識別可能性を持つ2つの関連する低次カオスモデルに対して,そのアプローチを数値的および成功裏に検証した。
論文 参考訳(メタデータ) (2020-01-17T12:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。