論文の概要: Lyceum: An efficient and scalable ecosystem for robot learning
- arxiv url: http://arxiv.org/abs/2001.07343v1
- Date: Tue, 21 Jan 2020 05:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:02:26.818144
- Title: Lyceum: An efficient and scalable ecosystem for robot learning
- Title(参考訳): Lyceum: ロボット学習のための効率的でスケーラブルなエコシステム
- Authors: Colin Summers, Kendall Lowrey, Aravind Rajeswaran, Siddhartha
Srinivasa, Emanuel Todorov
- Abstract要約: Lyceumは、ロボット学習のための高性能な計算エコシステムである。
Julia プログラミング言語と MuJoCo 物理シミュレータ上に構築されている。
OpenAIのGymやDeepMindのdmコントロールなど,一般的な抽象化よりも5~30倍高速です。
- 参考スコア(独自算出の注目度): 11.859894139914754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Lyceum, a high-performance computational ecosystem for robot
learning. Lyceum is built on top of the Julia programming language and the
MuJoCo physics simulator, combining the ease-of-use of a high-level programming
language with the performance of native C. In addition, Lyceum has a
straightforward API to support parallel computation across multiple cores and
machines. Overall, depending on the complexity of the environment, Lyceum is
5-30x faster compared to other popular abstractions like OpenAI's Gym and
DeepMind's dm-control. This substantially reduces training time for various
reinforcement learning algorithms; and is also fast enough to support real-time
model predictive control through MuJoCo. The code, tutorials, and demonstration
videos can be found at: www.lyceum.ml.
- Abstract(参考訳): ロボット学習のための高性能計算エコシステムLyceumを紹介する。
Lyceumは、Juliaプログラミング言語とMuJoCo物理シミュレータの上に構築されており、ハイレベルプログラミング言語の使いやすさとネイティブCのパフォーマンスを組み合わせている。
全体として、環境の複雑さに応じて、LyceumはOpenAIのGymやDeepMindのdmコントロールといった一般的な抽象化に比べて5~30倍高速である。
これにより、さまざまな強化学習アルゴリズムのトレーニング時間を大幅に短縮すると同時に、MuJoCoによるリアルタイムモデル予測制御をサポートすることができる。
コード、チュートリアル、デモビデオは、www.lyceum.mlで見ることができる。
関連論文リスト
- Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - YAMLE: Yet Another Machine Learning Environment [4.985768723667417]
YAMLEはオープンソースのフレームワークで、機械学習(ML)モデルとメソッドによる迅速なプロトタイピングと実験を容易にする。
YAMLEにはコマンドラインインターフェースと、人気があり保守状態の良いPyTorchベースのライブラリとの統合が含まれている。
YAMLEの目標は、研究者や実践者が既存の実装を素早く構築し比較できる共有エコシステムに成長することだ。
論文 参考訳(メタデータ) (2024-02-09T09:34:36Z) - JaxMARL: Multi-Agent RL Environments and Algorithms in JAX [105.343918678781]
我々は、GPU対応の効率と多くの一般的なMARL環境のサポートを組み合わせた、最初のオープンソースPythonベースのライブラリであるJaxMARLを紹介します。
我々の実験は、壁時計時間の観点から、JAXベースのトレーニングパイプラインが既存のアプローチの約14倍高速であることを示している。
また、人気の高いStarCraft Multi-Agent ChallengeのJAXベースの近似的な再実装であるSMAXを紹介し、ベンチマークする。
論文 参考訳(メタデータ) (2023-11-16T18:58:43Z) - Accelerate Multi-Agent Reinforcement Learning in Zero-Sum Games with
Subgame Curriculum Learning [65.36326734799587]
ゼロサムゲームのための新しいサブゲームカリキュラム学習フレームワークを提案する。
エージェントを以前に訪れた状態にリセットすることで、適応的な初期状態分布を採用する。
我々は,2乗距離をNE値に近似するサブゲーム選択指標を導出する。
論文 参考訳(メタデータ) (2023-10-07T13:09:37Z) - CoLA: Exploiting Compositional Structure for Automatic and Efficient
Numerical Linear Algebra [62.37017125812101]
機械学習における大規模線形代数問題に対して, CoLA という, 単純だが汎用的なフレームワークを提案する。
線形演算子抽象と合成ディスパッチルールを組み合わせることで、CoLAはメモリと実行時の効率的な数値アルゴリズムを自動的に構築する。
偏微分方程式,ガウス過程,同変モデル構築,教師なし学習など,幅広い応用で有効性を示す。
論文 参考訳(メタデータ) (2023-09-06T14:59:38Z) - CaiRL: A High-Performance Reinforcement Learning Environment Toolkit [9.432068833600884]
CaiRL Environment Toolkitは、学習エージェントをトレーニングするための効率的で互換性があり、持続可能な代替手段である。
古典的制御ベンチマークにおけるCaiRLの有効性を実証し,実行速度をOpenAI Gymと比較した。
論文 参考訳(メタデータ) (2022-10-03T21:24:04Z) - VRKitchen2.0-IndoorKit: A Tutorial for Augmented Indoor Scene Building
in Omniverse [77.52012928882928]
INDOORKITはNVIDIA OMNIVERSEの組み込みツールキットである。
屋内シーンビルディング、シーンランダム化、アニメーションコントロールのための柔軟なパイプラインを提供する。
論文 参考訳(メタデータ) (2022-06-23T17:53:33Z) - Lettuce: PyTorch-based Lattice Boltzmann Framework [0.0]
格子ボルツマン法 (LBM) は計算流体力学などにおける効率的なシミュレーション手法である。
本稿では,PyTorch ベースの LBM コードである Lettuce について紹介する。
論文 参考訳(メタデータ) (2021-06-24T11:44:21Z) - Extending Python for Quantum-Classical Computing via Quantum
Just-in-Time Compilation [78.8942067357231]
Pythonは、その柔軟性、ユーザビリティ、可読性、開発者の生産性を重視することで有名な人気のあるプログラミング言語です。
量子ジャスト・イン・タイム・コンパイルのための堅牢なC++インフラストラクチャを通じて、異種量子古典計算を可能にするPythonの言語拡張を提案する。
論文 参考訳(メタデータ) (2021-05-10T21:11:21Z) - Accelerating GMRES with Deep Learning in Real-Time [0.0]
GMRESの解決までの時間を短縮するために使用できるリアルタイム機械学習アルゴリズムを紹介します。
私たちのフレームワークは、ディープラーニングアルゴリズムをその場で統合する点で、斬新です。
論文 参考訳(メタデータ) (2021-03-19T18:21:38Z) - Julia Language in Machine Learning: Algorithms, Applications, and Open
Issues [5.666843255747851]
機械学習は、科学と工学の分野で開発を推進している。
現在、機械学習アルゴリズムの開発に最もよく使われているプログラミング言語は、PythonとC/C ++である。
本稿では,機械学習におけるJulia言語の適用に関する研究成果と開発状況を要約する。
論文 参考訳(メタデータ) (2020-03-23T09:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。