論文の概要: Improved Image Classification with Manifold Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13063v1
- Date: Thu, 19 Sep 2024 19:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:03:17.537692
- Title: Improved Image Classification with Manifold Neural Networks
- Title(参考訳): マニフォールドニューラルネットワークによる画像分類の改善
- Authors: Caio F. Deberaldini Netto, Zhiyang Wang, Luana Ruiz,
- Abstract要約: グラフニューラルネットワーク(GNN)は、さまざまな学習タスクで人気を集めている。
本稿では,一般データ表現におけるGNNの可能性,特に画像領域における検討を行う。
分類タスクにおいて、画像ラベルに対応するノードラベルを予測するためにGNNを訓練し、GNNの収束を利用してGNNの一般化を分析する。
- 参考スコア(独自算出の注目度): 13.02854405679453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have gained popularity in various learning tasks, with successful applications in fields like molecular biology, transportation systems, and electrical grids. These fields naturally use graph data, benefiting from GNNs' message-passing framework. However, the potential of GNNs in more general data representations, especially in the image domain, remains underexplored. Leveraging the manifold hypothesis, which posits that high-dimensional data lies in a low-dimensional manifold, we explore GNNs' potential in this context. We construct an image manifold using variational autoencoders, then sample the manifold to generate graphs where each node is an image. This approach reduces data dimensionality while preserving geometric information. We then train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to manifold neural networks to analyze GNN generalization. Experiments on MNIST and CIFAR10 datasets demonstrate that GNNs generalize effectively to unseen graphs, achieving competitive accuracy in classification tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、分子生物学、輸送システム、電力網などの分野において、様々な学習タスクで人気を集めている。
これらのフィールドは自然にグラフデータを使用し、GNNのメッセージパッシングフレームワークの恩恵を受けている。
しかし、より一般的なデータ表現、特に画像領域におけるGNNの可能性については、いまだ解明されていない。
高次元データが低次元多様体にあると仮定する多様体仮説を活用することで、この文脈でGNNのポテンシャルを探求する。
可変オートエンコーダを用いて画像多様体を構築し,各ノードが画像であるグラフを生成する。
このアプローチは、幾何学的情報を保持しながら、データの次元性を低下させる。
次に、GNNを訓練し、分類タスクにおける画像ラベルに対応するノードラベルを予測し、GNNの多様体ニューラルネットワークへの収束を利用してGNNの一般化を分析する。
MNISTとCIFAR10データセットの実験は、GNNが非表示グラフに効果的に一般化し、分類タスクにおける競合精度を達成することを示した。
関連論文リスト
- GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification [1.857645719601748]
グラフニューラルネットワーク(GNN)は、グラフデータの表現を学習するための強力なモデルとして登場した。
我々は,最も表現力の高いGNNでさえ,ノード属性や明示的なラベル情報を入力として使用せずに学習できないことを示す。
本稿では,ノードの機能,ラベル,位置情報を統合したGNN-MultiFixという簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T12:59:39Z) - Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
グラフニューラルネットワーク(GNN)は、固有のネットワーク機能の抽出に重点を置いている。
GNNのための強化型メタラーナを提案する。
AdaGNNは、リッチで多様なノード近傍情報を持つアプリケーションに対して非常によく機能する。
論文 参考訳(メタデータ) (2021-08-14T03:07:26Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。