Efficient orthogonal control of tunnel couplings in a quantum dot array
- URL: http://arxiv.org/abs/2001.07671v1
- Date: Tue, 21 Jan 2020 17:49:11 GMT
- Title: Efficient orthogonal control of tunnel couplings in a quantum dot array
- Authors: T.-K. Hsiao, C. J. van Diepen, U. Mukhopadhyay, C. Reichl, W.
Wegscheider and L. M. K. Vandersypen
- Abstract summary: Crosstalk of gate voltages to dot potentials and inter-dot tunnel couplings complicates the tuning of the device parameters.
We show that the crosstalk on tunnel barriers can be efficiently characterized and compensated for, using the fact that the same exponential dependence applies to all gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrostatically-defined semiconductor quantum dot arrays offer a promising
platform for quantum computation and quantum simulation. However, crosstalk of
gate voltages to dot potentials and inter-dot tunnel couplings complicates the
tuning of the device parameters. To date, crosstalk to the dot potentials is
routinely and efficiently compensated using so-called virtual gates, which are
specific linear combinations of physical gate voltages. However, due to
exponential dependence of tunnel couplings on gate voltages, crosstalk to the
tunnel barriers is currently compensated through a slow iterative process. In
this work, we show that the crosstalk on tunnel barriers can be efficiently
characterized and compensated for, using the fact that the same exponential
dependence applies to all gates. We demonstrate efficient calibration of
crosstalk in a quadruple quantum dot array and define a set of virtual barrier
gates, with which we show orthogonal control of all inter-dot tunnel couplings.
Our method marks a key step forward in the scalability of the tuning process of
large-scale quantum dot arrays.
Related papers
- Concurrent Fermionic Simulation Gate [0.0]
We propose a novel gate integrating iswap and cphase operations within a single gate cycle.
We theoretically show one possible realization of this gate for superconducting qubits using bichromatic parametric drives at distinct frequencies.
arXiv Detail & Related papers (2024-11-28T22:26:36Z) - Scalable multi-qubit intrinsic gates in quantum dot arrays [0.0]
The intrinsic quantum gates refer to the class of natural-forming transformations in the qubit rotating-frame under direct exchange coupling.
We develop a general formalism for identifying the multi-qubit intrinsic gates under arbitrary array connectivity.
The applications of the intrinsic gates in quantum computing and quantum error correction are explored.
arXiv Detail & Related papers (2024-03-11T16:49:56Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
We harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations.
The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions.
We present numerical simulations of the gate operation in a superconducting quantum circuit architecture.
arXiv Detail & Related papers (2022-03-14T17:33:40Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
High-connectivity circuits are a major roadblock for current quantum hardware.
We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits.
arXiv Detail & Related papers (2022-03-09T19:00:02Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Implementation of geometric quantum gates on microwave-driven
semiconductor charge qubits [9.88147281393944]
A semiconductor-based charge qubit, confined in double quantum dots, can be a platform to implement quantum computing.
We provide a theoretical framework to implement universal geometric quantum gates in this system.
arXiv Detail & Related papers (2020-04-01T03:21:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.