Scalable quantum simulator with an extended gate set in giant atoms
- URL: http://arxiv.org/abs/2503.04537v1
- Date: Thu, 06 Mar 2025 15:22:37 GMT
- Title: Scalable quantum simulator with an extended gate set in giant atoms
- Authors: Guangze Chen, Anton Frisk Kockum,
- Abstract summary: We propose a scalable quantum simulator with an extended gate set based on giant-atom three-level systems.<n>By leveraging this tunability, our setup supports both CZ and iSWAP gates through simple frequency adjustments.<n>As a demonstration, we showcase the simulation of spin dynamics in dissipative Heisenberg XXZ spin chains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computation and quantum simulation require a versatile gate set to optimize circuit compilation for practical applications. However, existing platforms are often limited to specific gate types or rely on parametric couplers to extend their gate set, which compromises scalability. Here, we propose a scalable quantum simulator with an extended gate set based on giant-atom three-level systems, which can be implemented with superconducting circuits. Unlike conventional small atoms, giant atoms couple to the environment at multiple points, introducing interference effects that allow exceptional tunability of their interactions. By leveraging this tunability, our setup supports both CZ and iSWAP gates through simple frequency adjustments, eliminating the need for parametric couplers. This dual-gate capability enhances circuit efficiency, reducing the overhead for quantum simulation. As a demonstration, we showcase the simulation of spin dynamics in dissipative Heisenberg XXZ spin chains, highlighting the setup's ability to tackle complex open quantum many-body dynamics. Finally, we discuss how a two-dimensional extension of our system could enable fault-tolerant quantum computation, paving the way for a universal quantum processor.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots [5.228819198411081]
We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
arXiv Detail & Related papers (2024-04-29T13:37:43Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion
chain [0.0]
parallel operations are important for both near-term quantum computers and larger-scale fault-tolerant machines.
We propose and implement a pairwise-parallel gate scheme on a trapped-ion quantum computer.
We demonstrate the utility of this scheme by creating a GHZ state in one step using parallel gates with one overlapping qubit.
arXiv Detail & Related papers (2023-02-17T21:12:14Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
The spin of an electron confined in semiconductor quantum dots is a promising candidate for quantum bit (qubit) implementations.
We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment.
We find an inverse correlation between quantum gate errors and quantum dot confinement.
arXiv Detail & Related papers (2022-10-10T10:12:54Z) - Circuit connectivity boosts by quantum-classical-quantum interfaces [0.4194295877935867]
High-connectivity circuits are a major roadblock for current quantum hardware.
We propose a hybrid classical-quantum algorithm to simulate such circuits without swap-gate ladders.
We numerically show the efficacy of our method for a Bell-state circuit for two increasingly distant qubits.
arXiv Detail & Related papers (2022-03-09T19:00:02Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Deterministic multi-mode gates on a scalable photonic quantum computing
platform [0.0]
We show a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state.
On this platform, fault-tolerant universal quantum computing is possible if the cluster state entanglement is improved.
arXiv Detail & Related papers (2020-10-27T16:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.