Reimagining Self-Adaptation in the Age of Large Language Models
- URL: http://arxiv.org/abs/2404.09866v1
- Date: Mon, 15 Apr 2024 15:30:12 GMT
- Title: Reimagining Self-Adaptation in the Age of Large Language Models
- Authors: Raghav Donakanti, Prakhar Jain, Shubham Kulkarni, Karthik Vaidhyanathan,
- Abstract summary: This paper presents a vision for using Generative AI (GenAI) to enhance the effectiveness and efficiency of architectural adaptation.
Drawing parallels with human operators, we propose that Large Language Models (LLMs) can autonomously generate context-sensitive adaptation strategies.
Our findings suggest that GenAI has significant potential to improve software systems' dynamic adaptability and resilience.
- Score: 0.9999629695552195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern software systems are subjected to various types of uncertainties arising from context, environment, etc. To this end, self-adaptation techniques have been sought out as potential solutions. Although recent advances in self-adaptation through the use of ML techniques have demonstrated promising results, the capabilities are limited by constraints imposed by the ML techniques, such as the need for training samples, the ability to generalize, etc. Recent advancements in Generative AI (GenAI) open up new possibilities as it is trained on massive amounts of data, potentially enabling the interpretation of uncertainties and synthesis of adaptation strategies. In this context, this paper presents a vision for using GenAI, particularly Large Language Models (LLMs), to enhance the effectiveness and efficiency of architectural adaptation. Drawing parallels with human operators, we propose that LLMs can autonomously generate similar, context-sensitive adaptation strategies through its advanced natural language processing capabilities. This method allows software systems to understand their operational state and implement adaptations that align with their architectural requirements and environmental changes. By integrating LLMs into the self-adaptive system architecture, we facilitate nuanced decision-making that mirrors human-like adaptive reasoning. A case study with the SWIM exemplar system provides promising results, indicating that LLMs can potentially handle different adaptation scenarios. Our findings suggest that GenAI has significant potential to improve software systems' dynamic adaptability and resilience.
Related papers
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
Real-world machine learning systems often encounter model performance degradation due to distributional shifts in the underlying data generating process.
Existing approaches to addressing shifts, such as concept drift adaptation, are limited by their reason-agnostic nature.
We propose self-healing machine learning (SHML) to overcome these limitations.
arXiv Detail & Related papers (2024-10-31T20:05:51Z) - Adaptive Self-Supervised Learning Strategies for Dynamic On-Device LLM Personalization [3.1944843830667766]
Large language models (LLMs) have revolutionized how we interact with technology, but their personalization to individual user preferences remains a significant challenge.
We present Adaptive Self-Supervised Learning Strategies (ASLS), which utilize self-supervised learning techniques to personalize LLMs dynamically.
arXiv Detail & Related papers (2024-09-25T14:35:06Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
This paper presents an innovative framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM)
Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research.
arXiv Detail & Related papers (2024-09-20T03:09:23Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - SWITCH: An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems [1.2277343096128712]
Machine Learning-Enabled Systems (MLS) is crucial for maintaining Quality of Service (QoS)
The Machine Learning Model Balancer is a concept that addresses these uncertainties by facilitating dynamic ML model switching.
This paper introduces SWITCH, an exemplar developed to enhance self-adaptive capabilities in such systems.
arXiv Detail & Related papers (2024-02-09T11:56:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z) - Towards Self-Adaptive Machine Learning-Enabled Systems Through QoS-Aware
Model Switching [1.2277343096128712]
We propose the concept of a Machine Learning Model Balancer, focusing on managing uncertainties related to ML models by using multiple models.
AdaMLS is a novel self-adaptation approach that leverages this concept and extends the traditional MAPE-K loop for continuous MLS adaptation.
Preliminary results suggest AdaMLS surpasses naive and single state-of-the-art models in guarantees.
arXiv Detail & Related papers (2023-08-19T09:33:51Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Optimal by Design: Model-Driven Synthesis of Adaptation Strategies for
Autonomous Systems [9.099295007630484]
We present Optimal by Design (ObD), a framework for model-based requirements-driven synthesis of optimal adaptation strategies for autonomous systems.
ObD proposes a model for the high-level description of the basic elements of self-adaptive systems, namely the system, capabilities, requirements and environment.
Based on those elements, a Markov Decision Process (MDP) is constructed to compute the optimal strategy or the most rewarding system behaviour.
arXiv Detail & Related papers (2020-01-16T12:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.