論文の概要: Machine Understandable Policies and GDPR Compliance Checking
- arxiv url: http://arxiv.org/abs/2001.08930v1
- Date: Fri, 24 Jan 2020 09:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 05:26:14.883070
- Title: Machine Understandable Policies and GDPR Compliance Checking
- Title(参考訳): 機械理解可能なポリシーとgdprコンプライアンスチェック
- Authors: Piero A. Bonatti, Sabrina Kirrane, Iliana M. Petrova, Luigi Sauro
- Abstract要約: SPECIAL H2020プロジェクトは、個人データ共有が、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、かつ、規制義務を定め、規制義務を定め、規制義務を定め、かつ、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、自動的に検証できる一連のツールを提供することを目的とする。
- 参考スコア(独自算出の注目度): 9.032680855473986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The European General Data Protection Regulation (GDPR) calls for technical
and organizational measures to support its implementation. Towards this end,
the SPECIAL H2020 project aims to provide a set of tools that can be used by
data controllers and processors to automatically check if personal data
processing and sharing complies with the obligations set forth in the GDPR. The
primary contributions of the project include: (i) a policy language that can be
used to express consent, business policies, and regulatory obligations; and
(ii) two different approaches to automated compliance checking that can be used
to demonstrate that data processing performed by data controllers / processors
complies with consent provided by data subjects, and business processes comply
with regulatory obligations set forth in the GDPR.
- Abstract(参考訳): 欧州一般データ保護規則(gdpr)は、その実施を支援する技術的および組織的措置を要求。
この目的に向かって、SPECIAL H2020プロジェクトは、データコントローラやプロセッサがGDPRの義務に準拠する個人データ処理と共有を自動的にチェックできる一連のツールを提供することを目的としている。
プロジェクトの主な貢献は次のとおりである。
一 同意、事業方針及び規制義務の表現に使用できる政策言語
2 自動コンプライアンスチェックに対する2つの異なるアプローチは、データコントローラ/プロセッサが行うデータ処理が、データ主体が提供する同意を遵守すること、およびビジネスプロセスがGDPRに定める規制義務に従うことを実証するために使用することができる。
関連論文リスト
- RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation [51.998738311700095]
その長さ、複雑さ、頻繁な更新を特徴とする規制文書は解釈が難しい。
RegNLPは、規制規則と義務のアクセスと解釈を簡素化することを目的とした、多分野のサブフィールドである。
ObliQAデータセットには、Abu Dhabi Global Markets (ADGM) からの27,869の質問が含まれている。
論文 参考訳(メタデータ) (2024-09-09T14:44:19Z) - Towards an Enforceable GDPR Specification [49.1574468325115]
プライバシ・バイ・デザイン(PbD)は、EUなどの現代的なプライバシー規制によって規定されている。
PbDを実現する1つの新しい技術は強制(RE)である
法律規定の正式な仕様を作成するための一連の要件と反復的な方法論を提示する。
論文 参考訳(メタデータ) (2024-02-27T09:38:51Z) - A Multi-solution Study on GDPR AI-enabled Completeness Checking of DPAs [3.1002416427168304]
一般データ保護規則(DPA、General Data Protection Regulation)は、個人データが保護されたまま処理を規制するデータ処理契約(DPA)を必要とする。
したがって、前提条件に従ってDPAの完全性を確認することは、要求が完全であることを保証するために不可欠である。
本稿では,規定事項に対するDPAの完全性チェックに対処する自動化戦略を提案する。
論文 参考訳(メタデータ) (2023-11-23T10:05:52Z) - Legal Requirements Analysis [2.3349787245442966]
法的な要件を解析し,その表現を例示する様々な手法について検討する。
機械分析可能な表現を規則から作成する代替案について述べる。
論文 参考訳(メタデータ) (2023-11-23T09:31:57Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - NLP-based Automated Compliance Checking of Data Processing Agreements
against GDPR [9.022562906627991]
我々は、与えられたDPAの"shall"要求に対するコンプライアンスをチェックする自動化されたソリューションを提案する。
提案手法では,750件のうち618件が真違反であり,76件の偽違反を提起し,さらに524件の要件を正しく識別する。
論文 参考訳(メタデータ) (2022-09-20T13:50:58Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
我々はリレーショナルアクションベース(RAB)の一般的な枠組みを紹介する。
RABは両方の制限を解除することで既存のモデルを一般化する。
データ対応ビジネスプロセスのベンチマークにおいて、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-08-12T17:03:50Z) - Learning to Limit Data Collection via Scaling Laws: Data Minimization
Compliance in Practice [62.44110411199835]
我々は機械学習法における文献に基づいて、データとシステム性能を結びつけるデータ解釈に基づく収集を制限するフレームワークを提案する。
我々は、性能曲線微分に基づくデータ最小化基準を定式化し、有効かつ解釈可能な分数法法技術を提供する。
論文 参考訳(メタデータ) (2021-07-16T19:59:01Z) - Compliance Generation for Privacy Documents under GDPR: A Roadmap for
Implementing Automation and Machine Learning [2.1485350418225244]
Privatechプロジェクトはコンプライアンスのエージェントとして企業や法律会社に焦点を当てている。
データプロセッサはコンプライアンスの評価と文書化のために説明責任対策を実行しなければならない。
コンプライアンスの問題を特定し,コンプライアンス評価と生成のロードマップを提供する。
論文 参考訳(メタデータ) (2020-12-23T14:46:51Z) - GDPR: When the Right to Access Personal Data Becomes a Threat [63.732639864601914]
個人データへのアクセス要求を行う300以上のデータコントローラについて検討する。
リクエストを処理したデータコントローラの50.4%が、ユーザを特定する手順に欠陥があることが分かりました。
望ましくない驚くべき結果によって、現在のデプロイメントでは、Webサービスのユーザのプライバシを実際に低下させています。
論文 参考訳(メタデータ) (2020-05-04T22:01:46Z) - The SPECIAL-K Personal Data Processing Transparency and Compliance
Platform [0.1385411134620987]
SPECIAL EU H 2020プロジェクトは、データポリシやデータ、イベント共有を表現するために使用できる。
システムは、データ処理と共有が、データ対象の同意に適合していることを検証することができる。
論文 参考訳(メタデータ) (2020-01-26T14:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。