論文の概要: NLP-based Automated Compliance Checking of Data Processing Agreements
against GDPR
- arxiv url: http://arxiv.org/abs/2209.09722v2
- Date: Sun, 18 Jun 2023 12:59:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 14:55:43.313262
- Title: NLP-based Automated Compliance Checking of Data Processing Agreements
against GDPR
- Title(参考訳): NLPに基づくGDPRに対するデータ処理契約の自動コンプライアンスチェック
- Authors: Orlando Amaral, Muhammad Ilyas Azeem, Sallam Abualhaija and Lionel C
Briand
- Abstract要約: 我々は、与えられたDPAの"shall"要求に対するコンプライアンスをチェックする自動化されたソリューションを提案する。
提案手法では,750件のうち618件が真違反であり,76件の偽違反を提起し,さらに524件の要件を正しく識別する。
- 参考スコア(独自算出の注目度): 9.022562906627991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing personal data is regulated in Europe by the General Data
Protection Regulation (GDPR) through data processing agreements (DPAs).
Checking the compliance of DPAs contributes to the compliance verification of
software systems as DPAs are an important source of requirements for software
development involving the processing of personal data. However, manually
checking whether a given DPA complies with GDPR is challenging as it requires
significant time and effort for understanding and identifying DPA-relevant
compliance requirements in GDPR and then verifying these requirements in the
DPA. In this paper, we propose an automated solution to check the compliance of
a given DPA against GDPR. In close interaction with legal experts, we first
built two artifacts: (i) the "shall" requirements extracted from the GDPR
provisions relevant to DPA compliance and (ii) a glossary table defining the
legal concepts in the requirements. Then, we developed an automated solution
that leverages natural language processing (NLP) technologies to check the
compliance of a given DPA against these "shall" requirements. Specifically, our
approach automatically generates phrasal-level representations for the textual
content of the DPA and compares it against predefined representations of the
"shall" requirements. Over a dataset of 30 actual DPAs, the approach correctly
finds 618 out of 750 genuine violations while raising 76 false violations, and
further correctly identifies 524 satisfied requirements. The approach has thus
an average precision of 89.1%, a recall of 82.4%, and an accuracy of 84.6%.
Compared to a baseline that relies on off-the-shelf NLP tools, our approach
provides an average accuracy gain of ~20 percentage points. The accuracy of our
approach can be improved to ~94% with limited manual verification effort.
- Abstract(参考訳): 個人データの処理は、一般データ保護規則(GDPR)により、データ処理協定(DPA)を通じてヨーロッパで規制されている。
DPAのコンプライアンスを確認することは、個人データの処理を含むソフトウェア開発において、DPAとしてソフトウェアシステムのコンプライアンス検証に寄与する。
しかし、GDPRにおけるDPA関連コンプライアンス要件を理解し、特定し、それらの要件をDPAで検証するためにかなりの時間と労力を必要とするため、与えられたDPAがGDPRに準拠するかどうかを手作業で確認することは困難である。
本稿では,GDPR に対する DPA の適合性をチェックするための自動解法を提案する。
法律の専門家との密接な交流の中で、私たちはまず2つのアーティファクトを構築しました。
一 DPAの遵守及び遵守に係るGDPRの規定から抽出した「shall」要件
(ii)要件の法的概念を定義する用語表。
そこで我々は、自然言語処理(NLP)技術を活用して、与えられたDPAの適合性をチェックする自動化ソリューションを開発した。
具体的には,DPAのテキストコンテンツに対するフレーズレベルの表現を自動生成し,あらかじめ定義された"shall"要件の表現と比較する。
30の実際のDPAのデータセットでは、750の真偽の違反のうち618が正しく発見され、76の偽の違反を発生させ、さらに524の満足した要件を正しく識別する。
このアプローチの平均精度は89.1%、リコールは82.4%、精度は84.6%である。
市販のNLPツールに依存するベースラインと比較して,提案手法は平均精度が約20ポイント向上する。
提案手法の精度は手作業による検証に制限を加えて約94%向上できる。
関連論文リスト
- Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
ファクト・チェッキング・リランカ(Contrastive Fact-Checking Reranker, CFR)を提案する。
我々はAVeriTeCデータセットを活用し、証拠文書からの人間による回答とクレームのサブクエストを注釈付けする。
データセットの精度は6%向上した。
論文 参考訳(メタデータ) (2024-10-07T00:09:50Z) - RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation [51.998738311700095]
その長さ、複雑さ、頻繁な更新を特徴とする規制文書は解釈が難しい。
RegNLPは、規制規則と義務のアクセスと解釈を簡素化することを目的とした、多分野のサブフィールドである。
ObliQAデータセットには、Abu Dhabi Global Markets (ADGM) からの27,869の質問が含まれている。
論文 参考訳(メタデータ) (2024-09-09T14:44:19Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - Demystifying Legalese: An Automated Approach for Summarizing and Analyzing Overlaps in Privacy Policies and Terms of Service [0.6240153531166704]
我々の研究は、このような文書に自動でアクセス可能な要約とスコアを提供する言語モデルを開発することで、この問題を軽減することを目指している。
我々はデータセットのトレーニング中にトランスフォーマーベースのモデルと従来のモデルを比較し、RoBERTaは0.74F1スコアで全体的なパフォーマンスを改善した。
論文 参考訳(メタデータ) (2024-04-17T19:53:59Z) - Towards an Enforceable GDPR Specification [49.1574468325115]
プライバシ・バイ・デザイン(PbD)は、EUなどの現代的なプライバシー規制によって規定されている。
PbDを実現する1つの新しい技術は強制(RE)である
法律規定の正式な仕様を作成するための一連の要件と反復的な方法論を提示する。
論文 参考訳(メタデータ) (2024-02-27T09:38:51Z) - A Multi-solution Study on GDPR AI-enabled Completeness Checking of DPAs [3.1002416427168304]
一般データ保護規則(DPA、General Data Protection Regulation)は、個人データが保護されたまま処理を規制するデータ処理契約(DPA)を必要とする。
したがって、前提条件に従ってDPAの完全性を確認することは、要求が完全であることを保証するために不可欠である。
本稿では,規定事項に対するDPAの完全性チェックに対処する自動化戦略を提案する。
論文 参考訳(メタデータ) (2023-11-23T10:05:52Z) - Better Practices for Domain Adaptation [62.70267990659201]
ドメイン適応(DA)は、ラベルを使わずに、モデルを配置データに適用するためのフレームワークを提供することを目的としている。
DAの明確な検証プロトコルは、文献の悪い実践につながっている。
ドメイン適応手法の3つの分野にまたがる課題を示す。
論文 参考訳(メタデータ) (2023-09-07T17:44:18Z) - AI-enabled Automation for Completeness Checking of Privacy Policies [7.707284039078785]
ヨーロッパでは、プライバシーポリシーは一般データ保護規則に準拠する。
本稿では,プライバシーポリシーの完全性チェックのためのAIベースの自動化を提案する。
論文 参考訳(メタデータ) (2021-06-10T12:10:51Z) - GDPR: When the Right to Access Personal Data Becomes a Threat [63.732639864601914]
個人データへのアクセス要求を行う300以上のデータコントローラについて検討する。
リクエストを処理したデータコントローラの50.4%が、ユーザを特定する手順に欠陥があることが分かりました。
望ましくない驚くべき結果によって、現在のデプロイメントでは、Webサービスのユーザのプライバシを実際に低下させています。
論文 参考訳(メタデータ) (2020-05-04T22:01:46Z) - Machine Understandable Policies and GDPR Compliance Checking [9.032680855473986]
SPECIAL H2020プロジェクトは、個人データ共有が、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、かつ、規制義務を定め、規制義務を定め、規制義務を定め、かつ、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、規制義務を定め、自動的に検証できる一連のツールを提供することを目的とする。
論文 参考訳(メタデータ) (2020-01-24T09:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。