論文の概要: RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation
- arxiv url: http://arxiv.org/abs/2409.05677v1
- Date: Mon, 9 Sep 2024 14:44:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:19:16.202554
- Title: RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation
- Title(参考訳): RegNLP in Action: 自動情報検索と回答生成によるコンプライアンスの実現
- Authors: Tuba Gokhan, Kexin Wang, Iryna Gurevych, Ted Briscoe,
- Abstract要約: その長さ、複雑さ、頻繁な更新を特徴とする規制文書は解釈が難しい。
RegNLPは、規制規則と義務のアクセスと解釈を簡素化することを目的とした、多分野のサブフィールドである。
ObliQAデータセットには、Abu Dhabi Global Markets (ADGM) からの27,869の質問が含まれている。
- 参考スコア(独自算出の注目度): 51.998738311700095
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Regulatory documents, issued by governmental regulatory bodies, establish rules, guidelines, and standards that organizations must adhere to for legal compliance. These documents, characterized by their length, complexity and frequent updates, are challenging to interpret, requiring significant allocation of time and expertise on the part of organizations to ensure ongoing compliance.Regulatory Natural Language Processing (RegNLP) is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations. We define an Automated Question-Passage Generation task for RegNLP, create the ObliQA dataset containing 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection, design a baseline Regulatory Information Retrieval and Answer Generation system, and evaluate it with RePASs, a novel evaluation metric that tests whether generated answers accurately capture all relevant obligations and avoid contradictions.
- Abstract(参考訳): 政府の規制機関が発行する規制文書は、規則、ガイドライン、および組織が法的遵守のために従わなければならない基準を定めている。
これらの文書は、その長さ、複雑さ、頻繁な更新を特徴とするものであり、継続的なコンプライアンスを確保するために、組織の一部に時間と専門知識の相当な割り当てが必要であり、規制規則や義務のアクセスと解釈を簡素化することを目的とした多分野のサブフィールドである。
本稿では,RegNLPにおける自動質問・回答生成タスクを定義し,Abu Dhabi Global Markets (ADGM) の金融規制文書収集から抽出した27,869の質問を含むObliQAデータセットを作成し,ベースラインを設計し,RePASを用いて評価する。
関連論文リスト
- An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - Driving with Regulation: Interpretable Decision-Making for Autonomous Vehicles with Retrieval-Augmented Reasoning via LLM [11.725133614445093]
この研究は、自動運転車の解釈可能な意思決定の枠組みを示す。
我々は、検索型拡張生成(RAG)に基づく交通規制検索(TRR)エージェントを開発する。
検索したルールの意味的な複雑さを考えると、我々はLarge Language Model (LLM)を利用した推論モジュールも設計する。
論文 参考訳(メタデータ) (2024-10-07T05:27:22Z) - The Artificial Intelligence Act: critical overview [0.0]
この記事では、最近承認された人工知能法を概観する。
これはまず、2024/1689年のEU(Regulation)の主要な構造、目的、アプローチを示すことから始まる。
テキストは、全体的なフレームワークが適切かつバランスが取れたとしても、アプローチは非常に複雑であり、それ自体の目的を損なうリスクがある、と結論付けている。
論文 参考訳(メタデータ) (2024-08-30T21:38:02Z) - An Open Knowledge Graph-Based Approach for Mapping Concepts and Requirements between the EU AI Act and International Standards [1.9142148274342772]
EUのAI法は、規制の遵守に関する技術的要件に従って、そのような組織の焦点をシフトする。
本稿では、規則や標準における規範文に関連する用語と要件をマッピングするための、シンプルで繰り返し可能なメカニズムを提供する。
論文 参考訳(メタデータ) (2024-08-21T18:21:09Z) - AuditNet: A Conversational AI-based Security Assistant [DEMO] [10.941722434218262]
我々は,Goのコンプライアンスチェックを容易にするために,多機能な対話型AIアシスタントフレームワークを提案する。
本フレームワークは,関連するコンテキスト認識情報のレビュー,インデックス作成,検索を自動化する。
このAIアシスタントは、コンプライアンスチェックに関わる手作業を削減するだけでなく、精度と効率を向上させる。
論文 参考訳(メタデータ) (2024-07-19T08:33:07Z) - Measuring Retrieval Complexity in Question Answering Systems [64.74106622822424]
検索複雑性(Retrieval complexity, RC)は、検索された文書の完全性に基づく新しい計量である。
任意の検索システムを用いてRCを計測するための教師なしパイプラインを提案する。
本システムは検索システムに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-06-05T19:30:52Z) - Legal Requirements Analysis [2.3349787245442966]
法的な要件を解析し,その表現を例示する様々な手法について検討する。
機械分析可能な表現を規則から作成する代替案について述べる。
論文 参考訳(メタデータ) (2023-11-23T09:31:57Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Tag-based regulation of modules in genetic programming improves
context-dependent problem solving [62.997667081978825]
タグに基づく遺伝子制御を実験的に導入し、実証する。
タグベースの遺伝子制御は、既存のタグベースの命名スキームを拡張している。
タグに基づく規制は、文脈依存問題における問題解決性能を向上させる。
論文 参考訳(メタデータ) (2020-12-16T19:49:28Z) - Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation [49.671882751569534]
我々は、宣言文を質問応答対に変換する透明な統語規則であるSynQGを開発した。
PropBankの引数記述とVerbNet状態述語を利用して、浅いセマンティックコンテンツを組み込む。
文法的不正確な質問を排除し,構文の流布性を改善するために,これらの構文規則のアウトプットを逆翻訳する。
論文 参考訳(メタデータ) (2020-04-18T19:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。